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1 Distance from additivity with ANOVA deomposition
We can find a means of measuring additivity by looking to the ANOVA decomposition.
ANOVA allows us to separate f into different components corresponding to groups of inputs.
The additive portion of f is then the sum of the univariate ANOVA terms. Owen defines an
additive function in this manner, using the ANOVA decomposition [6].

Definition 1.1 (Owen [6]). The additive portion of f is

fadd(x) = E(f) +
d∑

i=1

f{i}(x),

where f{i} is the first-order ANOVA term f{i}(x) := E(f(x)|x−i).

Note, then, that taking f−fadd extracts only the interaction ANOVA terms of f . If f = fadd,
then f is an additive function, since f − fadd = 0.

Using Definition 1.1 as a frame for viewing the additivity of f , the relative magnitude of
f = fadd could serve to measure ’distance’ from being fully additive. In practice, however, we
cannot get our hands on f = fadd, since finding the ANOVA decomposition is impractical.
The following result, which shows that fadd is the best additive approximation to f , could
point us towards a strategy to approximate f = fadd.

Lemma 1.1 (Owen [6]). Let f ∈ L2([−1, 1]d). Then, for any additive function g ∈
L2([−1, 1]d),

‖f − g‖L2 ≥ ‖f − fadd‖L2 . (1)

By slightly modifying (1) in Lemma 1.1, we can define distance from additivity in terms
of first-order Sobol’ indices known from [9, 10].

Corollary 1.2. Let f ∈ L2([−1, 1]d). Then, for any additive function g ∈ L2([−1, 1]d),

‖f − g‖2L2

var(f)
≥ 1−

d∑
i=1

Si(f) =
∑
|u|>1

Su(f), (2)
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where Si(f) are the first-order Sobol’ indices and Su(f) are the higher-order Sobol’ indices
of f [7, 8].

Proof. Here, we show that
‖f − fadd‖2L2

var(f)
= 1 −

d∑
i=1

Si(f). Recalling Definition 1.1, we have

fadd = E(f) +
d∑

i=1

f{i}. Therefore, f − fadd =
∑
|u|>1

fu. Since the terms in the ANOVA

decomposition are orthogonal,

‖f − fadd‖2L2 =

∫ ( ∑
|u|>1

fu

)2

dx (3)

=
∑
|u|>1

∫
f 2
udx (4)

=
∑
|u|>1

σ2
u (5)

When we divide by the variance of f , we arrive at

‖f − fadd‖2L2

var(f)
=

∑
|u|>1

Su(f) = 1−
d∑

i=1

Si(f)

The left-hand side of (2) provides a bound on the sum of the higher-order Sobol’ indices,
which measure the importance of interactions.
Lemma 1.1 suggests that we can find an upper bound ‖f − g‖L2 on the L2−norm of the
non-additive portion of f by choosing g ≈ fadd. We define distance from additivity in the
following manner.

Definition 1.2. Let f ∈ L2([−1, 1]d). The distance from additivity of f , denoted ∆add

is
∆add :=

‖f − fadd‖L2

‖f‖L2

.

Therefore, choosing g ≈ fadd should mean

‖f − g‖L2

‖f‖L2

≥ ∆add (6)

provides a tight bound on the distance from additivity.
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2 Surrogates for bound on distance from additivity
As a practical approach to approximating the bound in (6), we propose to compute a sur-
rogate f̂ ≈ f for which the ANOVA terms can readily be computed [3, 5]. Therefore, we
should be able to get our hands on a close approximation for fadd using f̂add. By choosing
g = f̂add, we can approximate the integrals in (6) by sampling.

Remark 2.1. For a given function f , define

Padd(f) = fadd

We can either compute the additive portion of a surrogate for f

‖f −Padd(f̂)‖,

where f̂ is a surrogate for f , or we can compute a surrogate for the additive portion of f

‖f − P̂add(f)‖,

where here P̂add(f) is a surrogate for Padd(f). Note that we know both the following in-
equalities are valid:

‖f −Padd(f)‖ ≤ ‖f −Padd(f̂)‖ and ‖f −Padd(f)‖ ≤ ‖f − P̂add(f)‖.

The key questions are (i) which bound is better? And (ii) which one is easier to compute?

2.1 Approach 1: Compute surrogate for model and take its addi-
tive portion

The first approach described in Remark 2.1 entails constructing a surrogate f̂ ≈ f for the
model f .

We project f̂ onto its additive portion Padd(f̂). Setting g = Padd(f̂), the upper bound
on (6) becomes

‖f −Padd(f̂)‖L2

‖f‖L2

≥ ∆add.

The surrogate f̂ can be constructed by a method of choice. The term ‖f −Padd(f̂)‖L2 must
be approximated by numerical integration. We can approximate ‖f‖L2 either by numerical
integration or use the surrogate to approximate it.

2.2 Approach 2: Compute surrogate for additive portion of model

The second approach in Remark 2.1 entails constructing a surrogate P̂add(f) for the model’s
additive portion Padd(f).

We can compute a PCE surrogate for Padd(f) by finding the coefficients on the additive
terms in the PCE of f . Gaussian quadrature can accurately compute the coefficients, but
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is costly in higher dimensions. Recall, the PCE coefficient corresponding to φk
i , univariate

polynomial of degree k, is given by

c2i,k =

∫
φk
i fdx,

where we assume the basis polynomials are orthonormal. The quadrature formula for inte-
grating a multivariate function h is∫

hdx ≈
d∑

i=1

Ni∑
ni=1

wni
h(xni

),

where Ni are the levels of accuracy in each direction and wni
and xni

) are the respective
quadrature weights and nodes.

We can estimate the coefficient ci,k, using level of accuracy N , by∫
φk
i fdx ≈ wd−1

0

N∑
n=1

wnφ
k
i (xn)f(xn),

where xn has the nth quadrature node in the ith entry and zero in all other entries.

3 Numerical experiments
Here, we test the method detailed above for the following test example:

fδ(x) =
5∑

i=1

xi + δ
5∏

j=1

(1 + xj), x ∈ [0, 1]5, (7)

where δ controls the influence of interactions.
Here, we take the first approach in Remark 2.1, where we construct a surrogate f̂ of

f and project on the additive portion of surrogate Padd(f̂). In experiments, we estimate
‖f −Padd(f̂)‖L2 and ‖f‖L2 using 102 samples.

We construct PCE [1, 11], standard ELM [4], and SW-ELM surrogates [2]. The surrogates
use progressively larger basis sizes. We use basis sizes (or numbers of neurons for ELM)
N = (n+d)!

n!d!
corresponding to the size of the degree n PCE basis for n = 1, ..., 5. We always

use 2N training points (two training points for every basis function) to perform regression.
At each basis size, the three surrogates use the same training sets for regression.

We compare surrogate-estimated bounds to the true distance from additivity given in Def-
inition 1.2. Since we have access to values for the first-order Sobol’ indices, mean, and
variance of fδ, we use Corollary 1.2 to say ∆add =

√
var(f)

‖f‖L2

√
1−

∑d
i=1 Si(f).
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Figure 1: Low interaction case (10−6) where ∆add = 3.5091 × 10−7. Left: Distance from
additivity bounds estimated with PCE, standard ELM, and SW-ELM. Middle: Distance
from additivity bound for PCE only compared to true distance from additivity. Right:
Relative error of surrogates.
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Figure 2: Medium interaction case (δ = 10−1) where ∆add = 0.0266. Left: Distance from
additivity bounds estimated with PCE, standard ELM, and SW-ELM. Middle: Same as
Left figure, but zoomed in. Right: Relative error of surrogates.
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Figure 3: High interaction case (δ = 104) where ∆add = 0.1089. Left: Distance from
additivity bounds estimated with PCE, standard ELM, and SW-ELM. Middle: Same as
Left figure, but zoomed in. Right: Relative error of surrogates.
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