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Abstract
Variance-based global sensitivity analysis (GSA) can provide a wealth of information when applied to
complex models. A well-known Achilles’ heel of this approach is its computational cost which often renders
it unfeasible in practice. An appealing alternative is to analyze instead the sensitivity of a surrogate model
with the goal of lowering computational costs while maintaining sufficient accuracy. Should a surrogate be
"simple" enough to be amenable to the analytical calculations of its Sobol’ indices, the cost of GSA is
essentially reduced to the construction of the surrogate. We propose a new class of sparse weight Extreme
Learning Machines (SW-ELMs) which, when considered as surrogates in the context of GSA, admit
analytical formulas for their Sobol’ indices and, unlike the standard ELMs, yield accurate approximations of
these indices. The effectiveness of this approach is illustrated through both traditional benchmarks in the
field and on a chemical reaction network.

Background

Motivations and Goals
1 Consider model f : [0, 1]d→ R with uniformly distributed, independent input x
2 Sobol’ indices are invaluable tools for GSA:

Sk = var[fk(xk)]
var[f (x)]

, Stot
k = 1− var[f−k(x−k)]

var[f (x)]
3 Approximation using Monte Carlo (MC) methods is intractable when f is expensive to
evaluate

4 Use surrogates with analytically known Sobol’ indices (e.g. polynomial chaos, Gaussian processes)
to avoid sampling

5 Can neural networks (NN) work as surrogates with analytic formulas for Sobol’ indices?

Extreme learning machines

ELM has the form f̂ (x) = βT (φ (Wx + b))

1 W - inner layer weight matrix
2 b - inner layer biases
3 β - output weights
4 φ activation function (acts

component-wise)
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Extreme learning machines (ELM): hidden layer weights and biases randomly sampled independently, no
output bias used. Only need to train output weights β via linear least squares. For M training points:

1 Sample W and b (e.g. from standard normal distribution)
2 Assemble Hi,∗ = ((φ(Wxi + b))T and y = (y1 ... yM)T
3 Solve the L2 regularized least squares problem

arg min
β

1
2
‖Hβ − y‖2

2 + α

2
‖β‖2

2

4 Regularization parameter α determined by L-curve method or generalized cross validation
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Variance-Based GSA with ELMs

1 To get formulas for Sobol’ indices,
integrating surrogate should be easy

2 Common machine learning activation
functions (e.g. sigmoid, ReLU) do
not make integration easy

3 From theory, activation function can
be any smooth non-polynomial
function

1 Why not use φ(t) = et to make
integration as easy as possible?

2 Setting φ(t) = et, we can derive
analytic formulas for Sobol’ indices in
terms of b,W, and β

3 After training ELM, we can obtain
Sobol’ indices for free:

S(f̂ ) = S(b,W,β), Stot(f̂ ) = Stot(b,W,β)

Numerical Experiment

Application to Genetic Oscillator

1 Biochemical model describing
molecular species involved in
circadian rhythm regulation

2 Model is stiff ODE system (expensive
to solve)

3 Uncertain parameters x are 16
reaction rate parameters

4 Each parameter uniformly distributed
in interval given by ±5% of
respective nominal value

5 We study the average concentration
in time of species R as our QoI f

f (x) = 1
T

∫ T

0
R(t; x) dt

Initial GSA
1 3000 training size
2 Points sampled via Latin hypercube
sampling

3 1000 hidden layer neurons

1 Regularization parameter α = 10−4

from L-curve method
2 Compare to indices computed using

105 Monte Carlo samples
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ELM surrogate overestimates total indices and underestimates first order
indices

Sparse-Weight ELMs

Sparsification

1 Issue: ELM may overestimate the
influence of higher order ANOVA
terms

2 Idea: We can reduce influence of
higher order terms by making inner
weight matrix sparse

1 Sparse weight matrix Ws = B ◦W,
◦ denotes component-wise
multiplication

2 B randomly sparsifies entries of
weight matrix

3 How do pick what p to use?
Bij =

{
0 with probability p,
1 with probability 1− p ,

Proposed Method

1 Training ELMs is cheap
2 Create different SW-ELMs for different choices of p
3 Use SW-ELM with smallest approximation error for GSA
4 Main Idea: If sparsifying gives a better surrogate, it should give better Sobol’
indices

GSA with SW-ELM
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SW-ELM gives better GSA with fewer training points

Future Directions

1 Strategies for improving sparsification method
2 Connect the "optimal" sparsity of the weight matrix to total Sobol’ indices
3 Can sensitivity analysis inform neural network architecture?
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