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1 Introduction

In this project, we consider studying the estimation of coefficients of the Dittus-Boelter equation
from empirical data with uncertainty quantification [4]. The Dittus-Boelter equation can be used to
understand heat transfer for turbulent flow in circular tubes [5]. The equation allows the computation
of the Nusselt number Nu from the Reynolds number Re and the Prandtl number Pr [2]. Nu is the
ratio of convection to pure conduction heat transfer and measures local convection heat transfer at
the boundary. Pr is the ratio of the momentum diffusivity to the thermal diffusivity. Re is the ratio
of inertia to viscosity forces such that large values of Re represent turbulent flow [3]. For the case
where the fluid is heating, the Dittus-Boelter equation

Nu = 0.023Re0.8Pr0.4, (1)

holds where 0.7 ≤ Pr ≤ 16, 700 and Re ≥ 10, 000, indicating turbulent flow [2]. The validity of
equation (1) with coefficients θ = [0.023, 0.8.0.4] has been verified empirically for these conditions.
The leading coefficient was originally reported at values close to 0.023 by fitting to data [5]. We revisit
the problem of determining the coefficients of the Dittus-Boelter equation (1) using the db data.txt
set of 56 empirical observations. However, we use the Bayesian framework for parameter estimation,
treating θ as a random variable. We first perform statistical identifiability analysis by constructing
the Fisher information matrix. We then perform Bayesian inference to construct a distribution for
θ and compare to the results from identifiability analysis.

2 Identifiability

We analyze the identifiability of the parameters θ with respect to the db data.txt data set. A
parameter is identifiable if we can uniquely determine its value from the data. In particular, we are
interested in the statistical identifiability of the parameters in the observation model

Nui = θ1Re
θ2
i Pr

θ3
i + εi, (2)

where Nui, Rei, and Pri are the observed measurements of the Nusselt, Reynolds, and Prandtl
numbers. Furthermore, εi ∼ N (0, σ2) are errors in measurements, assumed to be identically and in-
dependently distributed. For this statistical model, the parameters are identifiable if f(Rei, P ri;θ) =

θ1Re
θ2
i Pr

θ3
i = θ′1Re

θ′2
i Pr

θ′3
i = f(Rei, P ri;θ

′) implies that θ = θ′. We determine identifiability of the
parameters using the Fisher information matrix F(θ) = 1

σ2S
>S for the Dittus-Boelter equation,

where

S =


∂f
∂θ1

(Re1, P r1;θ) ∂f
∂θ2

(Re1, P r1;θ) ∂f
∂θ3

(Re1, P r1;θ)

...

∂f
∂θ1

(Re56, P r56;θ) ∂f
∂θ2

(Re56, P r56;θ) ∂f
∂θ3

(Re56, P r56;θ)

 .
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When the Fisher information matrix at the nominal values θ = [0.023, 0.8.0.4] has full rank, then
the parameters are locally identifiable around the nominal values. We can interpret the rank of the
Fisher information at the nominal values by computing the singular values σi of S

Σ =

 5.01× 104

256
11.1

 .
Since the singular values are non-zero, and σi =

√
λi, where λi are the eigenvalues of F(θ), this

shows that F(θ) has full rank. We therefore conclude that the parameters are identifiable around
the nominal values.

3 Bayesian inference

We now consider the Bayesian framework where θ is treated as a random variable. With Bayesian
inference, we would like to construct the distribution that θ based on the likelihood of the fit to the
observed data. We begin by choosing a prior distribution for θ. We pick a Gaussian prior while also
imposing the constraint that θ1 ≥ 0. This is informed by the physical constraint that the Nusselt
number is positive. The nominal values θ = [0.023, 0.8.0.4] are taken as the initial parameter values.
We specify the initial error variance σ2 = 2.31× 104 based on the variance with the nominal values

σ2 =
1

56− 3

56∑
i=1

(0.023(Rei)
0.8(Pri)

0.4 −Nui)2.

We construct the posterior distribution for θ using the delayed rejection adaptive Metropolis (DRAM)
algorithm [1], which provides updates for the covariance matrix with each chain iterate. Our DRAM
implementation dedicates the first 104 iterations for burn in and constructs the posterior using an
additional 104 iterations. The DRAM chains for θ and for σ2 are given in Fig. 1.
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Figure 1: DRAM chains for parameters θ, (a) (b) an (c), and error variance, (d), constructed for
104 iterations after 104 iterations of burn-in.

The means of the DRAM estimated posteriors are θ̂ = [0.0054, 0.97, 0.40] with respective standard
deviations µθ̂ = [0.0027, 0.041, 0.025]. DRAM estimates the mean error variance as σ2 = 613.96. We
note that after burn-in, the parameter chains (a), (b), and (c) of Fig. 1 do not display ideal mixing
behavior. We compare this to the chain for the error variance which does display the desired mixing
behavior. The marginals of the posterior are given in Fig. 2.

We observe in (c) that the density of θ3 is roughly symmetric while the other densities are not.
Notably, the mean of θ3 is the only estimated mean which corresponds closely to the respective
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Figure 2: Marginal densities for parameters θ constructed from DRAM chains.
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Figure 3: Joint densities constructed from posterior distribution of θ

nominal value. The nominal value of θ2, however, lies in a low density region of the posterior for θ2,
shown in (b) of Fig. 2. We now consider the pairwise plots for the parameters in Fig. 3.

We see that of the pairwise plots demonstrate patterns of correlations between the parameters.
Particularly, we see a strong pattern of correlation between θ1 and θ2. We also note that the estimated
means of these parameters diverge from their nominal values. These correlations explain why we
do not observe ideal mixing behavior in Fig. 1. Nevertheless, we do still observe correlations are
not so strong as to indicate the parameters are non-identifiable. Therefore, these results agree with
the identifiability results. Based on how the parameter means diverge from the nominal values, this
could issues with the assumed observation model (2), where the observation error term should be
revised using experimental information.
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