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Motivating example - genetic oscillator

Biochemical model describing circadian rhythm regulation:

Which rate constants need to be measured
most accurately so we can determine the
concentration of R?

Image credit1

1J.G. Vilar, H.Y. Kueh, N. Barkai, S. Leibler. Mechanisms of noise-resistance in genetic oscillators. 2002.
John Darges (JSM 2022) August 10, 2022 3 / 18



Introduction: Variance-based global sensitivity analysis

Consider a model y = f (x) where y ∈ R, and x ∼ π(x) has independently distributed
entries

Sobol’ indices are invaluable tools for GSA which measure the contribution of each input
to variance in model output:

Sk :=
var[fk(xk)]

var[f (x)] , ST
k := 1 −

var[E(f (x)|xj , j 6= k)]
var[f (x)]

fk(xk) :=
∫

f (x)dx−k −E(f x), where dx−k denotes integrating over all inputs except xk

First order Sobol’ index Sk measures influence of xk outside of interactions

Total Sobol’ index ST
k measures influence of xk including interactions with other inputs
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Introduction: Computing Sobol’ indices

Monte Carlo (MC) methods generally used to estimate Sobol’ indices

However this is intractable when f is costly to evaluate

Instead can construct surrogate model f̂ ≈ f which is cheap to evaluate

Some surrogate models (e.g. polynomial chaos2, Gaussian processes3) admit analytic
formulas for Sobol’ indices

2B. Sudret. Global sensitivity analysis using polynomial chaos expansions. 2008.
3A. Marrel, B. Iooss, B. Laurent, O. Roustant. Calculations of Sobol indices for the gaussian process

metamodel. 2009.
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Neural network-based GSA tools

Let y = f (x), where x ∈ [0, 1]d has independent uniformly distributed entries

f is computationally expensive to evaluate and/or input dimension d is large

Can we develop a neural network-based surrogate method which admits analytic formulas
for Sobol’ indices?
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Background: Single layer neural networks

A single layer neural network has the form f̂ (x) = β> (φ (Wx + b))

W -hidden layer weight matrix
b - hidden layer biases
β - output weights
φ - activation function

Input #1

Input #2

Input #3

Output

Hidden
layer

Input
layer

Output
layer

We train the neural network by solving the nonlinear least squares problem for training points
(x1, y1), ..., (xm, ym), where yi = f̂ (x i)

argmin
W,b,β

m∑
i=1

(
f̂ (x i ;W,b,β)− yi

)2
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Background: Extreme learning machines

W,b independently sampled randomly (e.g. from standard normal distribution)4

Solve the L2 regularized linear least squares problem to find output weights

argmin
β

1
2‖Hβ − y‖2

2 +
α

2 ‖β‖
2
2

y = [ y1 · · · ym ]> and Hij = φ(w>
j x i + bj)

Computationally quick and easy to use but requires more hidden layer neurons

We determine the regularization parameter α
by the L-curve method5

‖Hβ − y‖

‖β
‖

4G.-B. Huang, Q.-Y. Zhu, C.-K. Siew. Extreme learning machine: Theory and applications. 2006.
5P. C. Hansen. Getting Serious: Choosing the Regularization Parameter 2010.

John Darges (JSM 2022) August 10, 2022 8 / 18



Variance-based GSA with ELMs

Analytically integrating ELM surrogate should be easy if we want Sobol’ index formulas

Common ML activation functions (e.g. sigmoid) do not make integration easy

However, activation function can be any smooth non-polynomial function6

Set φ(t) = et −→ we derive analytic formulas in terms of b,W, and β

After training ELM, obtain Sobol’ indices for free7

S(f̂ ) = S(b,W,β), ST (f̂ ) = ST (b,W,β)

6G.-B. Huang, Q.-Y. Zhu, C.-K. Siew. Extreme learning machine: Theory and applications. 2006.
7J. Darges, A. Alexanderian, P.A. Gremaud. Extreme learning machines for variance-based global sensitivity

analysis. 2022.
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Genetic oscillator

Stiff ODE system (expensive to solve)

16 reaction rate parameters are uncertain

Each parameter uniformly distributed in
interval ±5% of respective nominal value

Study average concentration in time of
species R as QoI:

f (x) = 1
T

∫ T

0
R(t; x) dt

Image credit8
8J.G. Vilar, H.Y. Kueh, N. Barkai, S. Leibler. Mechanisms of noise-resistance in genetic oscillators. 2002.
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GSA for genetic oscillator using ELM surrogate
Experimental setup: 3000 training size, 1000 hidden layers, α = 10−4
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ELM surrogate overestimates higher-order indices compared to MC9

9M. Merritt, A. Alexanderian, P.A. Gremaud. Multiscale global sensitivity analysis for stochastic chemical
systems. 2021.
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ELM and variable interactions
Consider fδ(x) =

∑15
k=1 xk + δ

∏d
j=1(1 + xj), x ∈ [0, 1]15 where δ controls variable interactions

Note: Interaction indices S int
i = ST

i − Si are the same for all inputs
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ELM surrogate overestimates higher-order indices when interactions are negligible
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Sparsification

Issue: ELM may overestimate higher order Sobol’ indices

Higher order Sobol’ indices correspond to influence of interactions

Idea: We can reduce influence of interaction terms by making inner weight matrix sparse

Sparse weight matrix Ws = B ◦ W, where Bij =

{
0 with probability p,
1 with probability 1 − p

How do we know which p to use?
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Sparse weight ELM
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Sparse Weight ELM: Choose p by testing which value gives the best surrogate error on a
validation set
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GSA for genetic oscillator using SW-ELM

Standard ELM surrogate (left) compared to SW-ELM (right) with p = 0.9
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Note: SW-ELM also performs well with FAR fewer training points
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Summary and future work

We use ELM as a quick and easy tool for variance-based GSA10

With exponential activation function, we derive analytic expressions of Sobol’ indices for
uniformly and normally distributed inputs

After training surrogate, we obtain Sobol’ indices for no additional cost

Sparse weight ELM improves GSA performance without sacrificing speed and simplicity of
ELM

Can we develop measures or heuristics to give information about variable interactions of
black box functions?

10J. Darges, A. Alexanderian, P.A. Gremaud. Extreme learning machines for variance-based global sensitivity
analysis. 2022.
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