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Learning vs. Approximation

Suppose we have a data set {(x i , yi)}N
i=1, (x i , yi) ∈ Rd×1

Approximation Learning

Data comes from a known model
yi = F (x i)

Inputs follow a known distribution x ∼ K
Can choose what is in our data set, but
data may be expensive to generate

Model is unknown but inputs/outputs are
labeled
Data follows some unknown distribution
(x, y) ∼ D
Have access to some set of data (which is
i.i.d.)
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Feedforward neural networks

Artificial neural networks (ANNs) have very general structure (we focus on single layer neural
networks)
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Feedforward neural networks
Single layer NN has the form

FNN(x) =
M∑

k=1
αkσ(W>

j x + bj) = α>σ(W>x + b) (1)

W ∈ Rd×M is hidden layer weight matrix, W = [ W1 . . . WM ]

α ∈ RM outer weight vector
b ∈ RM bias vector
σ : R → R activation function (with universal approximation property1)

To train, solve nonlinear least squares problem

min
W,α,b

N∑
i=1

(FNN(x i ;W,α,b)− yi)
2 (2)

1M. Leshno and V. Ya Lin and A. Pinkus and S. Schocken. Multilayer feedforward networks with a
nonpolynomial activation function can approximate any function. 1993.
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Kernels

Kernels are functions K : X × X → R (we will consider X = Rd)
Some kernels are induced by a feature map φ : Rd → H
H is a Hilbert space of certain functions f : Rd → R
Induced kernel is

K(x, x ′) = 〈φx , φx′〉H (3)

Feature space H is a Reproducing kernel Hilbert space

f (x) = 〈f ,K(·, x)〉H, f ∈ H, x ∈ Rd (4)

Under right conditions, some function in RKHS can model our data
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Kernel ridge regression
Find g ∈ H so that 〈g , φx i 〉H ≈ yi , have a linear least squares problem

min
N∑

i=1
(〈g , φx i )〉H − yi)

2 =
N∑

i=1
(〈f ,K(·, x i)〉H − yi)

2 (5)

Construct kernel matrix K ∈ Rd×d where Kij = K(x i , x j), which is SPD
Kernel ridge regression solves regularized least squares problem

min
α

N∑
i=1

( N∑
j=1

αjK(x i , x j)− yi
)2

+
λ2

2 ‖α‖2 (6)

Solution: α = (K + λ2I)−1y gives kernel machine

FKRR(x) =
N∑

j=1
αjK(x, x j) = α>K(x) (7)
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Connection between Kernels and ANN

Consider a feature map induced by an activation function

φω(x) = σ(ω>x + b) = σ(ω>(x, 1)) (8)

We focus on Hilbert spaces with the L2 inner product

Functions in the RKHS look like

F (x) =
∫

α(ω)σ(ω>(x, 1))dω (9)
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Randomization

Randomized algorithms have become prevalent in numerical linear algebra

Improve efficiency of smaller problems and feasibility of large problems

Many ways to introduce to introduce randomness and still guarantee good results (almost
surely)
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Random weight neural networks

Recall single layer NN

FNN(x) =
M∑

k=1
αkσ(W>

j x + bj) = α>σ(W>x + b) (10)

Instead of training over all (d + 2)M parameters, just randomly sample hidden layer
weights and biases
Only need to optimize output weights

min
α

N∑
i=1

(FNN(x i ;W′,α,b ′)− yi)
2 = ‖Hα− y‖2 (11)

Here Hij = σ(W>
j x i + bj)

Choices of activation function and sampling distribution matter!
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History of random weight NNs

Broomhead first introduces idea of turning training to linear least squares problem2

Schmidt neural networks3

Barron gives O(1/n2/d) convergence rates for sigmoidal networks 4

2D.S. Broomhead and D. Lowe. Multivariable Functional Interpolation and Adaptive Networks. 1988.
3W.F. Schmidt, M.A. Kraaijveld, R.P.W. Duin. Feedforward neural networks with random weights. 1992.
4A. Barron. Universal Approximation Bounds for Superpositions of a Sigmoidal Function. 1993.
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Random vector functional link

Random vector functional link (RVFL)5

Approximates functions with compact support, weights sampled uniformly
Average asymptotic convergence and generalization bounds6

Corrected theorems given in7

5Y.-H. Pao, G.-H. Park, D. Sobajic. Learning and generalization characteristics of the random vector
functional-link net. 1994.

6B. Igelnik, and Y.-H. Pao. Stochastic choice of basis functions in adaptive function approximation and the
functional-link net. 1995.

7D. Needell, A. Nelson, R. Saab, P. Salanevich. Random Vector Functional Link Networks for Function
Approximation on Manifolds. 2022.
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Extreme learning machine

Extreme learning machine (ELM) includes neural network and radial basis function
versions8

Prove universal approximation when activation function is bounded and sampling
distribution is continuous9

Claim much more broad approximation capabilities10

No convergence or generalization guarantees

8G.-B. Huang and D. Wang and Y. Lan. Extreme learning machines: A review. 2011.
9G.-B. Huang, L. Chen, and C.-K. Siew. Universal Approximation Using Incremental Constructive

Feedforward Networks with Random Hidden Nodes. 2006.
10G.-B. Huang, L. Chen. Convex incremental extreme learning machine. 2007
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Kernel methods the random feature way

Consider a kernel K(x, x′) =
∫
φx(ω)φx′(ω)dω

For a large data set, impractical to compute (and store) full kernel matrix K.
Instead approximate kernel matrix by a rank one approximation
Random features11 use Monte Carlo sampling

K ≈
K∑

k=1
zkz>

k , zk = [ φx1(ωk) . . . φxN (ωk) ]> (12)

O(
√

n log(n)) features give O(1/
√

n) bounds 12

11A. Rahimi, B. Recht. Random Features for Large-Scale Kernel Machines. 2007.
12A. Rudi, L. Rosasco. Generalization Properties of Learning with Random Features. 2017.
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Random bases

Random basis expansion13 does not work with the kernel, instead the feature map
With neural network style feature maps, they are equivalent to random weight neural
networks
Can take advantage of RKHS theory and functional analysis14

RKHS should be dense in space of continuous functions
We should be able to express the following by a series∫

f (ω)φx(ω)dω (13)

Can recreate claim of Huang ’06 using function analysis15

13A. Rahimi, B. Recht. Uniform approximation of functions with random bases. 2008.
14F. Bach. On the Equivalence between Kernel Quadrature Rules and Random Feature Expansions. 2017.
15Y. Sun, A. Gilbert, A. Tewari. On the Approximation Properties of Random ReLU Features. 2019.
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Random bases with structure

Do random bases/neural networks have any advantages over random features?
We have broad choices for activation functions
Sampling distribution for ω has many choices, too
By clever sampling, can impose function structure (interactions/main effects) on

F (x) =
M∑

k=1
αkσ(W>

j x + bj) (14)

In16 and17 use sparse sampling (W ∼ X · Y , X continuous RV and Y Bernoulli RV) to
impose structure

16A. Hashemi, H. Schaeffer, R. Shi, U. Topcu, G. Tran, R. Ward. Generalization bounds for sparse random
feature expansions. 2023.

17J. Darges, A. Alexanderian, P. Gremaud. Extreme learning machines for variance-based global sensitivity
analysis. 2023.

John Darges (AMGSS) December 4, 2023 15 / 18



References

1 M. Leshno and V. Ya Lin and A. Pinkus and S. Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. 1993.

2 C.E. Rasmussen, C.K.I. Williams. Gaussian Processes for Machine Learning. 2006.
3 R. Schaback, H. Wendland. Kernel techniques: From machine learning to meshless

methods. 2006.
4 P. Martinsson, J.A. Tropp. Randomized numerical linear algebra: Foundations and

algorithms 2020.
5 D.S. Broomhead and D. Lowe. Multivariable Functional Interpolation and Adaptive

Networks. 1988.
6 W.F. Schmidt, M.A. Kraaijveld, R.P.W. Duin. Feedforward neural networks with random

weights. 1992.
7 A. Barron. Universal Approximation Bounds for Superpositions of a Sigmoidal Function.

1993.
John Darges (AMGSS) December 4, 2023 16 / 18



References
1 Y.-H. Pao, G.-H. Park, D. Sobajic. Learning and generalization characteristics of the

random vector functional-link net. 1994.
2 B. Igelnik, and Y.-H. Pao. Stochastic choice of basis functions in adaptive function

approximation and the functional-link net. 1995.
3 D. Needell, A. Nelson, R. Saab, P. Salanevich. Random Vector Functional Link Networks

for Function Approximation on Manifolds. 2022.
4 G.-B. Huang, L. Chen, and C.-K. Siew. Universal Approximation Using Incremental

Constructive Feedforward Networks with Random Hidden Nodes. 2006.
5 G.-B. Huang and D. Wang and Y. Lan. Extreme learning machines: A review. 2011.
6 A. Rahimi, B. Recht. Random Features for Large-Scale Kernel Machines. 2007.
7 A. Rahimi, B. Recht. Uniform approximation of functions with random bases. 2008.
8 F. Bach. On the Equivalence between Kernel Quadrature Rules and Random Feature

Expansions. 2017.
John Darges (AMGSS) December 4, 2023 17 / 18



References
1 Y. Sun, A. Gilbert, A. Tewari. On the Approximation Properties of Random ReLU

Features. 2019.
2 A. Rudi, L. Rosasco. Generalization Properties of Learning with Random Features. 2017.
3 A. Hashemi, H. Schaeffer, R. Shi, U. Topcu, G. Tran, R. Ward. Generalization bounds for

sparse random feature expansions. 2023.
4 J. Darges, A. Alexanderian, P. Gremaud. Extreme learning machines for variance-based

global sensitivity analysis. 2023.
5 F. Liu and X. Huang and Y. Chen, J. K. Suykens. Random Features for Kernel

Approximation: A Survey on Algorithms, Theory, and Beyond. 2022.
6 M. Nguyen, N. Mücke. Random feature approximation for general spectral methods.

2023.
7 P.N. Suganthan, R. Katuwal. On the origins of randomization-based feedforward neural

networks. 2021.
8 W. Cao, X. Wang, Z. Ming, J. Gao. A review on neural networks with random weights.

2018.
John Darges (AMGSS) December 4, 2023 18 / 18


