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1 Introduction

Lie groups are special objects which are endowed simultaneously with an algebraic
structure and a geometric structure. Unifying the two structures are conditions we
impose that make smooth and discrete structure compatible in some manner. Lie
groups are of significant interest because they describe continuous symmetries which
appear in areas from theoretical physics to differential equations. As such, it is natural
that we would like to study geometric objects which interact well with the algebraic
structure. To begin, a Lie group is a smooth manifold with a group structure. Our
compatibility requirement is that the group operation and inversion must be smooth
maps with respect to the manifold structure. Conversely, geometric objects which
respect the group operation are referred to as invariant. From the invariant vector
fields on a Lie group, we can define a vector space equipped with a Lie bracket which
is known as a Lie algebra. We can naturally extend this notion into the realm of
Riemannian structures by studying metrics, connections, and curvatures which respect
the group structure.

2 Lie groups and Lie algebras

We begin with the definition of a Lie group. Throughout we will let G be a group with
identity e and multiplication ∗. A group G is an r-parameter Lie group if it also
has the structure of an r-dimensional smooth manifold such that the group operation
(g, h) 7→ g ∗ h and the inversion map i : g 7→ g−1 are smooth maps with respect to the
manifold structure.

It is important to keep in mind that Lie groups generally describe continuous sym-
metries when picturing a Lie group. Therefore, we will reference important symmetry
groups when giving examples of Lie groups.

Examples

1. Consider the circle described as SO(2), which is the collection of transformation
on the circle and equals the set of 2 × 2 matrices such that the determinant
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is 1. This is a 1−parameter Lie group with group action being composition of
transformations. More generally, we can define SO(n), the special orthogonal
group

2. The special unitary group SU(n) is the collection of unitary matrices with de-
terminant 1. This group is a generalization of SO(n) to complex variables.

It naturally follows that a Lie group homomorphism φ : G → H between two Lie
groups is a group homomorphism that is also a smooth map between manifolds.

As we are dealing with manifolds, it is natural that we want to describe them in
the language of tangent spaces. Indeed, we have tangent spaces, however, we wish to
study vector fields that somehow also respect the group structure of our Lie groups.
This is where the notion of invariance first appears. To study this we first introduce
the left (or right) multiplication map. The left (or right) multiplication map of an
element g ∈ G is defined

Lg(h) = g ∗ h (or Rg(h) = h ∗ g)

Henceforth, we will only refer to left multiplication as everything is parallel for left
multiplication. Note that these both define smooth maps since group multiplication is
required to be smooth. In fact, these maps are diffeomorphisms with inverse dLg−1 =
(dLg)

−1. Therefore, the differential dLg is well defined. A vector field V on G is said
to be or left-invariant if dLg(Vh) = Vg∗h (note the abuse of notation with respect to
dLg as this should be (dLg)h) for all g, h ∈ G. From here, we define the Lie algebra
g of G to be the vector space of left-invariant vector fields on G. Note that since Lg is
a diffeomorphism for all g, then dLg is an isomorphism of vector spaces. In particular,
this means that the action of any left-invariant vector field V can be determined from
the value it takes at the identity e, or, for any g, Vg = dLg(Ve). This tells us that
TgG ∼= g for all g ∈ G.

Examples

1. Let G = (R,+). Let x be the coordinate on G. Then for h ∈ R, Rh(x) = x+ h.
Then dRh(

∂
∂x

) = ∂Rh

∂x
∂
∂x

= ∂
∂x

. This implies ∂
∂x

is right invariant, and therefore in
the Lie algebra. However, x ∂

∂x
is not right invariant. Therefore, the Lie algebra

is g = spanR{ ∂∂x}.

2. Let G = GLn(R). This is an n2−parameter Lie group, so g ∼= Rn×n as vector
spaces and they are isomorphic as Lie algebras with Rn×n having the matrix
commutator AB − BA as its Lie bracket. Consider A ∈ Rn×n. Then the vector
field induced by it is vA|I = aij

∂
∂xij

. For any Y ∈ GL(n), we have

vA|Y = dRY (vA|I) =
∑
i,j,m

aijyjm
∂

∂xim
= vAY |I
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One can check that, for the Lie bracket, [vA, vB] = vAB−BA, i.e., the matrix
commutator.

More generally, a Lie algebra is defined to be a vector space equipped with a Lie bracket.
However, as the Lie bracket of two left-invariant vector fields will be left-invariant, our
notion of a Lie algebra induced from a Lie group aligns with the more general concept.
Given a Lie algebra g with Lie bracket [·, ·], we can define its structure constants
in the following way. Let {e1, ..., en} be a vector space basis for g. Then its structure
constants are the dot products

αijk = 〈[ei, ej], ek〉 for i, j, k = 1, ..., n

Clearly, based on this definition, we can see that the structure constants are skew-
symmetric in the first two indices.

Finally, we discuss two important maps, the Lie exponential map and the adjoint
representation, before introducing Riemannian structure. To define the exponential
map, consider the exponentiation of a vector field defined by exp(t, V )x = Ψ(t, x)
where Ψ is the flow generated by V . Then we define the Lie exponential map to be
g(t) = exp(tV )e. A property of this map is that gt ∗ gs = gt+s. In this way, we can
define an action on G by R by a given V , called an infinitesimal generator. Now,
we introduce the adjoint representation. This is a map Ad : G → Aut(g) defined by
g 7→ d(Cg)e where Cg is the conjugation map. Therefore, d(Cg)e = d(Lg)g−1 ◦ d(Rg−1)e.
More concretely, the map g is sent to can be described by

Ad(g)V = d
dt

(g exp(tV )g−1)|t=0

Further, we can define the adjoint map for on g, ad, by adX(Y ) = [X, Y ]. These
two maps are related in that ad = d(Ad)e. Note that ad is defined for vector fields.
However, recall that every vector in g is associated with a left-invariant vector field on
G through an isomorphism.

3 Invariant Metrics

Now, moving onto Riemannian structure, we want to know when we can obtain inter-
esting Riemannian structure on Lie groups. Being the basis for Riemannian structure,
we will first examine metrics. From Riemannian geometry, a Riemannian metric is a
positive definite scalar product gp : TpG × TpG → R defined for each p ∈ G. Now,
recalling the adjoint representation from above, in general, a representation of a Lie
group is a smooth homomorphism ρ : G → Aut(V ) for some finite dimensional vec-
tor space V . However, we will here let V = g. Remembering that metrics are inner
products defined on the tangent space of a manifold, we have the follow definition to
motivate what it means for a metric to be invariant. For a representation ρ, the inner
product 〈·, ·〉 is invariant if 〈ρ(g)U, ρ(g)V 〉 = 〈U, V 〉 for all U, V ∈ g and all g ∈ G.

This brings us to the definition of an invariant metric. A left-invariant metric
on a Lie group G is a Riemannian metric 〈·, ·〉 such that
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〈U, V 〉g = 〈(dLh)gU, (dLh)gV 〉ab

for all g, h ∈ G and all U, V ∈ TgG. A metric that is left and right-invariant is called
bi-invariant.

Proposition 1 There is a bijective correspondence between left-invariant metrics on
G and inner products defined on g.

Proof. Let 〈·, ·〉 be an inner product on g and let X, Y be vector fields on G. We define
a metric by

〈X, Y 〉g = 〈(dLg−1)gX, (dLg−1)gY 〉

On the other hand, given a metric on G and U, V ∈ g, then we define an inner product
by

〈U, V 〉 = 〈U, V 〉e

Furthermore, any Lie group which admits a left-invariant metric is complete.
If we impose a bi-invariant metric on G, the inversion map is not only by definition

smooth, it is also an isometry. Since Rg = i ◦ Lg−1 ◦ i, an important property of the
inversion map is this:

Proposition 2 If G has a left-invariant metric, then G also has a left invariant metric
if and only if the inversion map is an isometry.

Proof. Adh is induced by the smooth mapping LhR
−1
h : G → G. Since the metric g

is left-invariant, we have L∗hg = g. If g is also right-invariant, then (LhR
−1
h )∗g = g,

showing that Adh is an isometry. Consequently if we assume Adh is an isometry, then
clearly we have g is right-invariant since L∗hg = g.

Furthermore, if we restrict our case of G, we see that

Proposition 3 Let G be a connected Lie group with a left-invariant metric. Then
the metric is bi-invariant if and only if adX is skew-adjoint for every X ∈ g.

Proof. Suppose h ∈ G is close enough to e such that h = exp(X) for X close to 0 ∈ g.
Since Adh = Adexp(x) = exp(adX) and Adh is orthogonal if and only if Ad−1g = Ad∗g,
we have exp(−adX) = exp(ad∗X) if and only if −adX = ad(X)∗. Since a connected
Lie group is generated by a neighborhood of the identity and products of orthogonal
transformations are orthogonal, it follows that −adX = ad(X)∗. So adX is skew-adjoint
if and only if Adh is skew-adjoint, i.e., we have a bi-invariant metric.

The adjoint representation is of particular importance is the adjoint representation
due to the following correspondence:
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Proposition 4 (First Criterion) There is a bijective correspondence between bi-
invariant metrics on G and Ad−invariant inner products on g, i.e., inner products for
which Adg is an isometry for all g ∈ G.

Proof. This follows from Proposition 2 and form the fact that Adh is induced by LhR
−1
h .

Given the correspondence between inner products we see, the following theorem
from representation theory will help us characterize invariant metrics:

Theorem 1 Let G be a compact Lie group. Then for every representation ρ : G →
Aut(g), there exists an invariant inner product on g.

Proof. Let 〈·, ·〉 be an inner product. Define 〈X, Y 〉′ =
∫
G
〈AdhX,AdhY ]inv〉dG, inte-

grating over h ∈ G. Then this metric is bi-invariant:∫
G
〈Adh(AdkU), Adh(AdkV )〉dG =

∫
G
〈AdhU,AdhV 〉dG

Since any element can be expressed as the product of two elements, this shows the
inner product is constant over G.

Corollary 1.1 There is an invariant inner product on V if and only if ρ(G) is com-
pact. In particular, if G is compact, there exists an invariant inner product on V .

Theorem 2 (Second Criterion) Let G be a Lie group. An inner product on g
induces a bi-invariant metric on G if and only if Ad(G) is compact.

Therefore, from the above corollary, we can see immediately that every compact Lie
group admits a bi-invariant metric. Theorem 2 can be used to show that certain Lie
groups do not admit a bi-invariant metric.

Example The Lie group SE(n) is the collection of Euclidean rigid motions on Rn.
That is, the collection of rotations and translations. SE(n) does not admit a bi-
invariant metric for n ≥ 3.

Our next criterion for existence of a bi-invariant metric relies on the adjoint repre-
sentation on g, ad = dAde.

Theorem 3 (Third Criterion) Let G be a connected Lie group. An inner product
on g induces a bi-invariant metric on G if and only if the linear map adU : g → g is
skew-adjoint for all U ∈ g, i.e.,

〈adU(V ),W 〉 = −〈V, adU(W )〉 for all U, V,W ∈ g
In terms of Lie brackets: 〈[U, V ],W 〉 = 〈U, [V,W ]〉
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Proof. Suppose the metric is bi-invariant such that 〈U, V 〉 = 〈AdhU,AdhV 〉 where
h = exp(tW ). Then

〈U, V 〉 = 〈Adexp(tW )U,Adexp(tW )V 〉

Then, taking d
dt
|t=0 results in 0 = 〈UW−WU, V 〉+〈U, V W−WV 〉 where UW−WU =

[U,W ]. The reverse direction is shown by integration.

Finally, an important result of Milnor is that a connected Lie group admits a bi-
invariant metric if and only if it is isomorphic to the cartesian product of a compact
group and a Euclidean vector space.

4 Connections

Naturally, for any metric on a Riemannian manifold, we can define the usual extensions
of Riemannian structure. That is, we have connections, in particular, the Levi-Civita
connection. Given that a Lie group has additional structure compared to a typical
Riemannian manifold, we should expect that we can derive more specific information
about these constructs.

With a bi-invariant metric or even just a left-invariant metric, we can come up with
more specific formulas for the Levi-Civita connection of the given metric, since it is
already a given that it exists.

4.1 Left-invariant Case

Suppose 〈·, ·〉 is a left-invariant metric on a Lie group G. Then for X, Y ∈ g, we
have the 〈X, Y 〉g is constant over varying g. So we can define a constant function
〈X, Y 〉. Then, by Koszul’s formula, the Levi-Civita connection ∇ with respect to a
left-invariant metric:

2〈∇XY Z〈= X = (〈Y, Z〉) + Y (〈X,Z〉)− Z(〈X, Y 〉)− 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉 −
〈Z, [Y,X]〉 = −〈Y, [X,Z]〉 − 〈X, [Y, Z]〉 − 〈Z, [Y,X]〉

This follows from the above result. However, it only holds for left-invariant vector fields.
By rearranging our Lie brackets we come to the formula 2〈∇XY, Z〉 = 〈[X, Y ], Z〉 −
〈[Y, Z], X〉+ 〈[Z,X], Y 〉. Then, for the connection, we arrive at the formula

∇XY = 1
2
([X, Y ]− ad∗XY − ad∗YX)

where ad∗X represents the adjoint operator of adX ∈ Aut(g).
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4.2 Bi-invariant Case

If we specify that we will only consider bi-invariant metrics, then we can obtain an
even better formulation. By our Third Criterion, if we have a bi-invariant metric, then
〈[X, Y ], Z〉 = 〈X, [Y, Z]〉. Therefore, when we return to Koszul’s formula on Lie groups:

2〈∇XY, Z〉 = 〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z,X], Y 〉

Since 〈[Z,X], Y 〉 = 〈Y, [Z,X]〉 = 〈[Y, Z], X〉, then the last two terms cancel, leaving
only the first term. Therefore, the Levi-Civita connection is simply given by the Lie
bracket:

∇XY = 1
2
[X, Y ]

5 Curvature

We will explore the formula for section curvature here and some generalizations we can
make about sectional curvature for certain cases. Recall the the Riemannian curvature
tensor is given by R(X, Y )Z = ∇X,YZ −∇X∇YZ +∇Y∇XZ.

5.1 Left-invariant Case

We will return to the left-invariant case and discuss formations for a few different forms
of curvature on Lie groups. With respect to our left-invariant metric, i.e., the inner
product on g, we can find an orthonormal basis e1, ..., en on g. Working within a Lie
algebra means we are defining an orthonormal basis on the set of left-invariant vector
fields. Then, with respect to ∇ and recalling our structure constants aijk :

∇eiej = 1
2
(aijk − ajki + akij)ek

Note that we are using Einstein summation notation over the index k. Irrespective of
us working on a Lie group, since we are working within an orthonormal basis, then the
sectional curvature is given by:

κ(U, V ) = 〈R(U, V )U, V 〉

Theorem 4 If G is equipped with a left-invariant metric, then for any orthonormal
basis on g, we have that the section curvature κ(e1, e2) is given by

κ(e1, e2) = 1
2
(a12k(−a12k+a2k1+ak12)− 1

4
(a12k−a2k1+ak12)(a12k+a2k1−ak12)−ak11ak22)

where the constants aijk are the structure constants of g.

Proof. This is simply obtained by the first formula in the section and plugging it into
definition for κ.
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In certain specific cases, this formula can simplify into a more useful form. If ad(U)
is self-adjoint for some U ∈ g, then

κ(U, V ) ≥ 0 for all V ∈ g

Proof. Suppose U and V are orthonormal. Let E1 = U,E2 = V,E3, ..., En be an
orthonormal basis. adU being skew-adjoint means that the array aijk is skew in the
last two indices when i = 1. Then, the formula of Theorem 4 reduces to

κ(E1, E2) = 1
4

∑n
l=1(a2l1)

2

Therefore, κ(E1, E2) ≥ 0.

Furthermore, this is identically zero if U is orthogonal to the Lie span of v.
On an algebra, we define the center, Z(g) to be the collection of vectors that

commute with all other elements. In the case of a Lie algebra, this means that a vector
U is in the center if [U, V ] = 0 for every V ∈ g. If V is in the center of g, then we also
have κ(U, V ) ≥ 0 for all V ∈ g.

Proof. Let U be in the center. Then AdU = 0 and the zero transformation is skew-
adjoint. So this follows from the above.

5.2 Bi-invariant Case

Recall that for the bi-invariant case, we had the Levi-Civita connection as a simple
formulation: ∇XY = 1

2
[X, Y ].

From this we can also deduce a simple expression for the Riemannian curvature
tensor. R(U, V ) = 1

4
ad[U,V ]. Equivalently, we can say:

R(U, V )W = 1
4
[[U, V ],W ]

Additionally, the sectional curvature is given by:

κ(U, V ) = 1
4
〈[U, V ], [U, V ]〉 for U, V orthonormal

Consequently, this means κ(U, V ) = 0 if and only if [U, V ] = 0.

5.3 Geodesics

The final Riemannian structure we discuss are geodesics. Generally, geodesics are auto-
parallel curves, i.e., curves γ : [0, 1]→ G such that ∇γ′γ

′ = 0. However, we must ask if
there is a special characterization for our bi-invariant metric. Unsurprisingly, it turns
out that the geodesics are just the integral curves of left-invariant vector fields on G.

The map defined by Ig(h) = gh−1g is also an isometry. This map has the special
property that it reverses the orientation of geodesics. In other words, given a geodesic
γ, then Ig(γ(t)) = γ(−t). Geodesics through the identity e with respect to a vector
field U are just the integral curves γ(t) = exp(tU), where this is the Lie exponential
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map. Since g ∼= TeG, this mapping corresponds the the Riemannian exponential map
when viewing G as a Riemannian manifold.

However, in general the Riemannian exponential map and Lie exponential map are
not necessarily the same as the Riemannian one depends on the metric. Consider that,
given a vector field X, we can integrate to obtain a curve γ such that γ′(t) = X(γ(t))
for t ∈ [0, 1].

Theorem 5 Let X be a left-invariant vector field with integral curve γ(t) such that
γ(0) = e and γ′(0) = X0 ∈ TeG. Then γ(t) = exp(tX0), where this is the Lie
exponential map.

Proof. We have γ′(t) = exp(tX)X0 = γ(t)X0. Therefore, γ′(0) = eX0 = x0 and
γ(0) = e. Since X is left-invariant, then X(γ(t)) = γ(t)X0 = γ′(t).

If we have the case of a bi-invariant metric, we do indeed see that the Riemannian
and Lie exponential maps are the same. A result of this is:

Corollary 1 Let G be a connected Lie group with a bi-invariant metric. Then the
Lie exponential map is surjective.

Proof. By theorem 5, since we have a bi-invariant metric, then the Riemannian and
Lie exponential maps are the same. The Lie exponential map is defined on the entire
tangent space for every g ∈ G, i.e. this means G is geodesically complete. Hence the
same is so for the Riemannian exponential map. Then, by the Hopf-Rinow theorem,
since the Riemannian exponential map is surjective, then so is the Lie exponential
map.

As a final note, if G is compact and connected, we obtain the same result since G
being compact guarantees the existence of a bi-invariant metric.
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