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1. Introduction

Let us consider the following optimization under uncertainty problem:

min
x∈Rn

F (x) :=

∫
Ω
f(x,θ)µ(dθ) (1)

Here θ denotes realizations of a d-dimensional random vector that has distribution law µ. We let
x∗ denote the solution of the optimization problem, and ask the following question: how sensitive
is x∗(µ) to µ? Making this question precise and investigating it in a simple illustrative example is
the goal of this preliminary study.

2. A concrete problem formulation

The problem described in the introduction can be made more concrete by (i) focusing on a
specific set of distribution laws for θ; and, more importantly, (ii) specifying a suitable notion of
sensitivity analysis in the present context. Let the law of θ have density π = π(θ; ζ), where ζ is a
vector of parameters characterizing π. For a given ζ, we consider the objective function

F (x; ζ) =

∫
f(x,θ)π(θ; ζ).

A minimizer x∗ of F will be a function of ζ, x∗ = x∗(ζ). We can then consider the sensitivity of
x∗ to the components of ζ.

3. Illustrative analytic example

In this section, we consider the optimization of the Rosenbrock function f(x) = (θ1 − θ2x1)2 +
θ3(x2 − x2

1)2 under uncertainty in the coefficients θ1, θ2, and θ3.
In this brief study, we compare the solution of the corresponding (risk-neutral) optimization

under uncertainty (OUU) problem versus the solution of the optimization problem with random
and nominal choices of θi’s. The eventual goal is to understand the sensitivity of the solution of the
OUU problem to the distribution law of θ = (θ1, θ2, θ3)>, which is assumed to be a multivariate
normal in the present study.

3.1. Model problem. We consider the following “parameterized” Rosenbrock function:

f(x,θ) = (θ1 − θ2x1)2 + θ3(x2 − x2
1)2, x ∈ R3, θ ∈ R3. (2)

For a fixed θ, and assuming θ3 > 0, this function attains its minimum at

x∗ = [ξ ξ2]> with ξ =
θ1

θ2
. (3)

Note also that f(x∗,θ) = 0. We make the following assumptions on the distribution of the random
vector θ: we assume [θ1 θ2]> be a bivariate normal with mean [m1 m2]> and covariance matrix

C =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
.
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We also assume that θ3 is independent from θ1 and θ2 and is distributed uniformly in the interval
[99, 101]. We consider the OUU problem

min
x∈R2

F (x) :=

∫
R3

f(x,θ)µ(dθ). (4)

We can compute analytically that

F (x) = (σ2
2 +m2

2)x2
1 +m3(x2 − x2

1)2 − 2(ρσ1σ2 +m1m2)x1 + σ2
1 +m2

1

where m3 = 100 is the mean of θ3. The minimizer of this function is attained at

x∗ = [ξ ξ2]>, with ξ =
ρσ1σ2 +m1m2

σ2
2 +m2

2

. (5)

We can also compute

F (x∗) =
(σ2

1 +m2
1)(σ2

2 +m2
2)− (ρσ1σ2 +m1m2)2

σ2
2 +m2

2

=
E(θ2

1)E(θ2
2)− E(θ1θ2)2

E(θ2
2)

.

3.2. Basic numerical illustrations. First we specify the mean and covariance matrix of θ. We
let m1 = 2, m2 = 0.8, σ1 = σ2 = 0.1, and ρ = 0.7. We compare the following:

• x∗rand(θ) = arg min f(x,θ).
• x∗ouu = arg minEθ

(
f(x,θ)

)
.

• x∗det = arg min f(x,Eθ(θ)).

Note that x∗rand is a random variable, whereas x∗ouu and x∗det are deterministic. Specifically, x∗rand

is defined according to (3), x∗det is as in (3) with θ = [m1 m2 m3]>, and x∗ouu is as in (5). Since
the second coordinate of each of these minimizers is determined based on the first one, we compare
only the first coordinates of these different minimizers. The results are summarized in Figure 1.
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Figure 1. The first coordinate of x∗rand, x∗ouu and x∗det, which we denote by ξrand,
ξouu, and ξdet, respectively. The black curve depicts the probability density function
of ξrand; the vertical lines show the location of (deterministic) ξouu and ξdet.

3.3. Global sensitivity analysis. To understand the sensitivity of the minimizer to the parame-
ters determining the law of θ, we perform global sensitivity analysis (GSA). Since the minimizer is
determined by the scalar term ξ defined in (5), it is sufficient to perform the analysis on this term.
Note that ξ = ξ(ζ) with ζ = [m1 m2 σ1 σ2 ρ]>.

We model the uncertainty in the elements of ζ by defining them as uniformly distributed random
variables. Namely, for m1, m2, σ1, and σ2 we consider a 10% perturbation around the corresponding
nominal values and let ρ be distributed uniformly in the interval [−1, 1]. We consider the following
commonly used derivative based global sensitivity measures (DGSMs):

νj = E
{( ∂ξ

∂ζj

)2}
, i = 1, . . . , 5.
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Here E denotes expectation over the law of ζ and n = 5. It is important to note that here the
parameters have different magnitudes and different ranges. A rational approach to standardize
these indices is provided by the links between νj and the corresponding total Sobol’ indices, Tj .
Namely, we have

Tj ≤
Cj

V
νj , j = 1, . . . , n,

where V denotes the variance of ξ and Cj are Poincare constants; for ζj ∼ U(aj , bj), it is known
that Cj = (bj − aj)2/π2. The bounds,

Bj =
Cj

V
νj ,

can be used to quantify parameter importance. Parameters with small corresponding Bj ’s can be
considered unimportant.

In Figure 2 (left), we plot the bounds Bj , j = 1, . . . , 5, for the entries of ζ. The results indicate
that the minimizer of (4) is insensitive to σ1, σ2, and ρ. Essentially this means the uncertainty in
θ, in this problem, does not have a significant influence on the minimizer. However, it is important
to note that these results depend strongly on the nominal values of m1, m2, σ1, and σ2. We repeat
the present numerical experiment with the following nominal values for the means and variances of
θ1 and θ2:

m̄1 = 0.5, m̄2 = 0.35, σ̄1 = σ̄2 = 0.1.

The corresponding results are reported in Figure 2 (right). Note that in this case the DGSM-based
bound for ρ has a nontrivial value indicating that this parameter is not necessarily unimportant.
However, σ1 and σ2 are still unimportant.
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Figure 2. DGSM based bounds on total Sobol’ indices.

We can evaluate the usefulness of these bounds by comparing their value to those of the numer-
ically computed total Sobol’ indices. The comparisons are showing in Figure 3 where the left and
right figures correspond respectively to the left and right figures in Figure 2 .

In the example we are considering, this comparison suggests that significant about the Sobol’
indices can be inferred from the DGSM bounds. The bounds not only mirror the magnitudes of
the indices, they also relationships of magnitudes between different variables.

4. A practical note on implications of OUU: an optimal control perspective

The academic example consider here also provides some insight into performing OUU in practice.
Note that for each fixed realization of θ we can get an optimal x∗ with optimal objective value of
zero. However, θ is uncertain. In practice, this can correspond to a control objective defined in
terms of the output of a system that has some uncertain parameters in it and x is a control that we
seek to optimize. Finding a control by minimizing f(x,θ) for a fixed θ will provide a control that
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Figure 3. Comparison of DGSM bounds with the respective total Sobol’ indices.

is optimal for that specific θ. However, in practice one does not know the value of θ precisely—it is
uncertain. A control computed with a fixed set of uncertain parameters can be grossly suboptimal
for other possible realizations of θ. The idea of minimizing F (x) is to obtain a control that is “good
in average”.


