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Inverse problem

Consider the problem

argmin
θ

J(θ), J(θ) := ‖By(θ)− d‖2 (1)

where θ are unknown parameters, y is the solution to

{
y ′ = f (y ;θ)
y(t0) = y0

, y ∈ Rd (2)

Observation operator B at each time selects only some of the responses from y(ti)
corresponding to data available in array d

John Darges (AMGSS) April 24, 2023 2 / 20



Bayesian context

Assume data measurement procedure involves i.i.d. random noise

yi(θ)− di ∼ πnoise

Noise model gives likelihood πlike(θ) = π(d|θ)

Incorporate prior beliefs/assumptions about θ in prior distribution πprior(θ)

Bayes’ rule: πpost(θ) =
πlike(θ)πprior(θ)∫

Rn πlike(θ)πprior(θ)dθ

Posterior distribution in general constructed using Markov Chain Monte Carlo
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GSA for Bayesian inverse problem

For Bayesian inference: Select a parameterized prior πprior(θ; ξ) with hyperparameters ξ
Consider F (ξ), which maps hyperparameters to a statistic of the posterior for QoI q(θ)

Goal: Study sensitivity of F (ξ) to prior hyperparameters
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Variance-based global sensitivity analysis

Consider a model y = f (x) where y ∈ R, and x ∼ π(x) has independently distributed
entries

Sobol’ indices are invaluable tools for GSA which measure the contribution of each input
to variance in model output:

Sk :=
var[fk(xk)]

var[f (x)] , ST
k := 1 −

var[E(f (x)|xj , j 6= k)]
var[f (x)]

fk(xk) :=
∫

f (x)dx−k −E(f x), where dx−k denotes integrating over all inputs except xk

First order Sobol’ index Sk measures influence of xk outside of interactions

Total Sobol’ index ST
k measures influence of xk including interactions with other inputs
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Related Work

Robust Bayesian analysis - tools to determine if posterior is robust to different priors in
inference problems
Hyper-differential sensitivity analysis (HDSA) has been used for Bayesian inverse problems
to study measures of posterior uncertainty1

Derivative-based global sensitivity measures (DGSM) has been used to study the
sensitivity of information gain to uncertain model parameters 2

Variance-based GSA of function similar to F (ξ). Emulated by Gaussian process, training
data computed by MCMC 3

1I. Sunseri, A. Alexanderian, J. Hart, B. van Bloemen Waanders. Hyper-differential sensitivity analysis for
nonlinear Bayesian inverse problems. 2022.

2A. Chowdhary, A. Alexanderian. Sensitivity Analysis of the Information Gain in Infinite-Dimensional
Bayesian Linear Inverse Problems. 2023.

3I. Vernon, J. P. Gosling. A Bayesian Computer Model Analysis of Robust Bayesian Analyses. 2022.
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Method

Most statistics or measures of uncertainty require estimating an integral

Evaluating F (ξ) using MCMC for different ξ is expensive

Note: πlike does not depend on ξ

Question: Can we re-use likelihood evaluations for different ξ’s?

Yes, but we have to be careful about what distribution we integrate over!
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Importance Sampling

Consider integrating the following by Monte Carlo integration

Fmean(ξ) =
∫
Rn q(θ)πpost(θ; ξ)dθ

Sampling uniformly over Rn will not work

Importance Sampling: Choose an auxiliary distribution πIS to sample from∫
Rn q(θ)πpost(θ; ξ)dθ =

∫
Rn q(θ)πpost(θ;ξ)

πIS(θ)
πIS(dθ),

πIS should be “close” to πpost for this to work
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How to choose the auxiliary distribution

For this scheme to work, πIS should be “close” to πpost(ξ) for all ξ
Take πIS ∝ πlikeπprIS where πprIS is same class distribution as priors
Building IS sample set requires one MCMC run
Find hyperparameters for πprIS by minimizing the total KL-divergence4:

ξ∗ = argmin
ξ

M∑
i=1

∫
Rn

log
( πIS(θ; ξ)

πpost(θ; ξi)

)
πIS(θ; ξ)dθ

4J. Zhang, M.D. Shields. On the quantification and efficient propagation of imprecise probabilities resulting
from small datasets. 2017.
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Importance sampling-Monte Carlo estimator

Estimate Fmean(ξ) by Monte Carlo integration:∫
Rn

q(θ)πpost(θ; ξ)

πIS(θ)
πIS(dθ) =

1∫
Rn

πpr(θ;ξ)
πprIS(θ)

πprIS(dθ)

∫
Rn

q(θ)πpr(θ; ξ)

πprIS(θ)
πprIS(dθ)

≈ 1∑N
j=1

πpr(θj ;ξ)
πprIS(θj)

N∑
j=1

q(θj)
πpr(θj ; ξ)

πprIS(θj)
, θj ∼ πIS

When we change ξ, now we only need to re-evaluate the prior distribution
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Proposed Method

1 Build ISMC sample set {θj}N
j=1 by sampling from πIS using MCMC

2 Evaluate the QoI q(θ) at the sample points
3 For hyperparameter samples {ξi}M

i=1, evaluate πpr at samples {θj}N
j=1

4 Estimate by Monte Carlo integration {F (θj)}N
j=1

5 Use {F (θj)}N
j=1 to estimate Sobol’ indices (surrogate-assisted or sampling)

Assuming the likelihood is expensive to evaluate, the costliest step is the first one
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Example: Fitting Noisy Data to a Line

Fit data to y = mx + b
Estimate θ = (m, b)
b = −1, m = 2
Noise is i.i.d. normally distributed with
σ2 = 1
Likelihood and prior are Gaussian =⇒
posterior is Gaussian and can be
analytically computed
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Parameter estimation with MCMC
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Problem Setup

Prior is Gaussian with ξ = (µ, Γ)

Nominal µ =

[
2.4
−1.4

]
Nominal Γ =

[
1 0
0 1

]
We let the hyperparameters vary by ±50%
of the respective nominal value

Consider two different QoIs

Linear: q(θ) = θ>
[

5
1

]
Nonlinear: q(θ) = θ>θ

We are interested in both the posterior
means and variances
These can be analytically computed for
both QoIs
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ISMC total convergence for linear QoI
Do estimates of F (ξ) converge on average for different choices of ξ?
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Figure: Fmean(ξ) for the linear QoI
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Figure: Fvar(ξ) for the linear QoI
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ISMC GSA for linear QoI
We use a polynomial chaos surrogate model and compare to true indices
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Figure: Total indices of Fmean(ξ) for the linear QoI
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Figure: Total indices of Fvar(ξ) for the linear QoI
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ISMC total convergence for nonlinear QoI
Do estimates of F (ξ) converge on average for different choices of ξ?
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Figure: Fmean(ξ) for the nonlinear QoI
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Figure: Fvar(ξ) for the nonlinear QoI
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ISMC GSA for nonlinear QoI
We use a polynomial chaos surrogate model and compare to true indices
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Figure: Total indices of Fmean(ξ) for the nonlinear
QoI
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Figure: Total indices of Fvar(ξ) for the nonlinear
QoI
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Nonlinear Bayesian inverse problems

Applying the method to nonlinear problems introduces more challenges:

Model is a “black-box”

Nothing to compare our results against

Efficiently sampling from πIS by MCMC could be difficult

Importance sampling could fail for some priors
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