Identifying important prior hyperparameters in Bayesian inverse problems with efficient variance-based global sensitivity analysis

John Darges

Department of Mathematics North Carolina State University

April 24, 2023

Supported by NSF through awards DMS-1745654 and DMS 1953271.

John Darges (AMGSS)

April 24, 2023 1/20

Inverse problem

Consider the problem

$$\underset{\boldsymbol{\theta}}{\arg\min J(\boldsymbol{\theta})}, \quad J(\boldsymbol{\theta}) := \|\mathbf{B}\boldsymbol{y}(\boldsymbol{\theta}) - \mathbf{d}\|^2$$
(1)

where $\boldsymbol{\theta}$ are unknown parameters, \boldsymbol{y} is the solution to

$$\begin{cases} \mathbf{y}' = f(\mathbf{y}; \boldsymbol{\theta}) \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases}, \quad \mathbf{y} \in \mathbb{R}^d \end{cases}$$
(2)

Observation operator **B** at each time selects only some of the responses from $y(t_i)$ corresponding to data available in array **d**

イロト イヨト イヨト イヨ

Bayesian context

Assume data measurement procedure involves i.i.d. random noise

$$y_i(oldsymbol{ heta}) - d_i \sim \pi_{ ext{noise}}$$

Noise model gives likelihood $\pi_{
m like}(oldsymbol{ heta})=\pi(\mathbf{d}|oldsymbol{ heta})$

Incorporate prior beliefs/assumptions about $m{ heta}$ in prior distribution $\pi_{
m prior}(m{ heta})$

Bayes' rule:
$$\pi_{\text{post}}(\theta) = \frac{\pi_{\text{like}}(\theta)\pi_{\text{prior}}(\theta)}{\int_{\mathbb{R}^n}\pi_{\text{like}}(\theta)\pi_{\text{prior}}(\theta)d\theta}$$

Posterior distribution in general constructed using Markov Chain Monte Carlo

イロト イヨト イヨト イヨ

GSA for Bayesian inverse problem

For Bayesian inference: Select a parameterized prior $\pi_{\text{prior}}(\theta; \xi)$ with hyperparameters ξ Consider $F(\xi)$, which maps hyperparameters to a statistic of the posterior for Qol $q(\theta)$

Goal: Study sensitivity of $F(\boldsymbol{\xi})$ to prior hyperparameters

John Darges (AMGSS)

Variance-based global sensitivity analysis

- Consider a model y = f(x) where $y \in \mathbb{R}$, and $x \sim \pi(x)$ has independently distributed entries
- Sobol' indices are invaluable tools for GSA which measure the contribution of each input to variance in model output:

$$S_k := rac{\operatorname{var}[f_k(x_k)]}{\operatorname{var}[f(m{x})]}, \quad S_k^{\mathcal{T}} := 1 - rac{\operatorname{var}[\mathbb{E}(f(m{x})|x_j, \ j
eq k)]}{\operatorname{var}[f(m{x})]}$$

• $f_k(x_k) := \int f(x) dx_{-k} - \mathbb{E}(fx)$, where dx_{-k} denotes integrating over all inputs except x_k

- First order Sobol' index S_k measures influence of x_k outside of interactions
- Total Sobol' index S_k^T measures influence of x_k including interactions with other inputs

イロト 不得 トイヨト イヨト

Related Work

- Robust Bayesian analysis tools to determine if posterior is robust to different priors in inference problems
- Hyper-differential sensitivity analysis (HDSA) has been used for Bayesian inverse problems to study measures of posterior uncertainty¹
- $\bullet\,$ Derivative-based global sensitivity measures (DGSM) has been used to study the sensitivity of information gain to uncertain model parameters 2
- Variance-based GSA of function similar to $F(\xi)$. Emulated by Gaussian process, training data computed by MCMC ³

²A. Chowdhary, A. Alexanderian. Sensitivity Analysis of the Information Gain in Infinite-Dimensional Bayesian Linear Inverse Problems. 2023.

³I. Vernon, J. P. Gosling. A Bayesian Computer Model Analysis of Robust Bayesian Analyses. 2022. 🚊 🔊 🤉

¹I. Sunseri, A. Alexanderian, J. Hart, B. van Bloemen Waanders. Hyper-differential sensitivity analysis for nonlinear Bayesian inverse problems. 2022.

- Most statistics or measures of uncertainty require estimating an integral
- Evaluating $F(\xi)$ using MCMC for different ξ is expensive
- Note: π_{like} does not depend on $\pmb{\xi}$
- Question: Can we re-use likelihood evaluations for different ξ 's?
- Yes, but we have to be careful about what distribution we integrate over!

< □ > < □ > < □ > < □ > < □ >

Importance Sampling

Consider integrating the following by Monte Carlo integration

$$m{\mathcal{F}}_{ ext{mean}}(m{\xi}) = \int_{\mathbb{R}^n} q(m{ heta}) \pi_{ ext{post}}(m{ heta};m{\xi}) dm{ heta}$$

Sampling uniformly over \mathbb{R}^n will not work

Importance Sampling: Choose an auxiliary distribution π_{IS} to sample from

$$\int_{\mathbb{R}^n} q(\theta) \pi_{\mathrm{post}}(\theta; \boldsymbol{\xi}) d\theta = \int_{\mathbb{R}^n} q(\theta) rac{\pi_{\mathrm{post}}(\theta; \boldsymbol{\xi})}{\pi_{\mathrm{IS}}(\theta)} \pi_{\mathrm{IS}}(d\theta),$$

 $\pi_{\rm IS}$ should be "close" to $\pi_{\rm post}$ for this to work

イロト イヨト イヨト

How to choose the auxiliary distribution

- For this scheme to work, π_{IS} should be "close" to $\pi_{\mathrm{post}}({m\xi})$ for all ${m\xi}$
- $\bullet\,$ Take $\pi_{\rm IS}\propto\pi_{\rm like}\pi_{\rm prIS}$ where $\pi_{\rm prIS}$ is same class distribution as priors
- Building IS sample set requires one MCMC run
- Find hyperparameters for π_{prIS} by minimizing the total KL-divergence⁴:

$$\boldsymbol{\xi}^* = \arg\min_{\boldsymbol{\xi}} \sum_{i=1}^{M} \int_{\mathbb{R}^n} \log\Big(\frac{\pi_{\mathrm{IS}}(\boldsymbol{\theta};\boldsymbol{\xi})}{\pi_{\mathrm{post}}(\boldsymbol{\theta};\boldsymbol{\xi}_i)}\Big) \pi_{\mathrm{IS}}(\boldsymbol{\theta};\boldsymbol{\xi}) d\boldsymbol{\theta}$$

⁴J. Zhang, M.D. Shields. On the quantification and efficient propagation of imprecise probabilities resulting from small datasets. 2017.

April 24, 2023

9/20

John Darges (AMGSS)

Importance sampling-Monte Carlo estimator

Estimate $F_{\text{mean}}(\boldsymbol{\xi})$ by Monte Carlo integration:

$$egin{aligned} &\int_{\mathbb{R}^n} q(m{ heta}) rac{\pi_{ ext{post}}(m{ heta};m{\xi})}{\pi_{ ext{IS}}(m{ heta})} \pi_{ ext{IS}}(dm{ heta}) &= rac{1}{\int_{\mathbb{R}^n} rac{\pi_{ ext{pr}}(m{ heta};m{\xi})}{\pi_{ ext{prIS}}(m{ heta})} \pi_{ ext{prIS}}(dm{ heta})} \int_{\mathbb{R}^n} q(m{ heta}) rac{\pi_{ ext{pr}}(m{ heta};m{\xi})}{\pi_{ ext{prIS}}(m{ heta})} \pi_{ ext{prIS}}(dm{ heta}) \ & \approx rac{1}{\sum_{j=1}^N rac{\pi_{ ext{pr}}(m{ heta};m{\xi})}{\pi_{ ext{prIS}}(m{ heta})} \sum_{j=1}^N q(m{ heta}_j) rac{\pi_{ ext{pr}}(m{ heta};m{\xi})}{\pi_{ ext{prIS}}(m{ heta})}, \quad m{ heta}_j \sim \pi_{ ext{IS}} \end{aligned}$$

When we change $\boldsymbol{\xi}$, now we only need to re-evaluate the prior distribution

April 24, 2023 10 / 20

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposed Method

- **1** Build ISMC sample set $\{\theta_j\}_{j=1}^N$ by sampling from π_{IS} using MCMC
- **2** Evaluate the Qol $q(\theta)$ at the sample points
- So For hyperparameter samples $\{\boldsymbol{\xi}_i\}_{i=1}^M$, evaluate π_{pr} at samples $\{\boldsymbol{\theta}_j\}_{j=1}^N$
- Estimate by Monte Carlo integration $\{F(\theta_j)\}_{j=1}^N$
- Use $\{F(\theta_j)\}_{j=1}^N$ to estimate Sobol' indices (surrogate-assisted or sampling)

Assuming the likelihood is expensive to evaluate, the costliest step is the first one

Example: Fitting Noisy Data to a Line

- Fit data to y = mx + b
- Estimate $\theta = (m, b)$
- b = -1, m = 2
- Noise is i.i.d. normally distributed with $\sigma^2 = 1$
- Likelihood and prior are Gaussian ⇒ posterior is Gaussian and can be analytically computed

Parameter estimation with MCMC

John Darges (AMGSS)

April 24, 2023 13 / 20

Problem Setup

- Prior is Gaussian with $\pmb{\xi}=(\mu,\Gamma)$
- Nominal $\mu = \begin{bmatrix} 2.4 \\ -1.4 \end{bmatrix}$ • Nominal $\Gamma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- We let the hyperparameters vary by $\pm 50\%$ of the respective nominal value

• Consider two different Qols

• Linear:
$$q(\theta) = \theta^{ op} \begin{bmatrix} 5\\1 \end{bmatrix}$$

- Nonlinear: $q(\theta) = \theta^{ op} \theta$
- We are interested in both the posterior means and variances
- These can be analytically computed for both Qols

ISMC total convergence for linear QoI

Do estimates of $F(\xi)$ converge on average for different choices of ξ ?

ISMC GSA for linear Qol

We use a polynomial chaos surrogate model and compare to true indices

16/20

John Darges (AMGSS)

ISMC total convergence for nonlinear Qol

Do estimates of $F(\xi)$ converge on average for different choices of ξ ?

ISMC GSA for nonlinear Qol

We use a polynomial chaos surrogate model and compare to true indices

Nonlinear Bayesian inverse problems

Applying the method to nonlinear problems introduces more challenges:

- Model is a "black-box"
- Nothing to compare our results against
- \bullet Efficiently sampling from $\pi_{\rm IS}$ by MCMC could be difficult
- Importance sampling could fail for some priors

- I. Sunseri, A. Alexanderian, J. Hart, B. van Bloemen Waanders. Hyper-differential sensitivity analysis for nonlinear Bayesian inverse problems. 2022.
- A. Chowdhary, A. Alexanderian. Sensitivity Analysis of the Information Gain in Infinite-Dimensional Bayesian Linear Inverse Problems. 2023.
- I. Vernon, J. P. Gosling. A Bayesian Computer Model Analysis of Robust Bayesian Analyses. 2022.
- J. Zhang, M.D. Shields. On the quantification and efficient propagation of imprecise probabilities resulting from small datasets. 2017.
- S. Tokdar, R. Kass, Importance sampling: A review. 2010.
- J. O. Berger, D. R. Insua, F. Ruggeri. Bayesian Robustness. 2000.

(日)