Identifying important prior hyperparameters in Bayesian inverse problems with efficient variance-based global sensitivity analysis

John Darges

Department of Mathematics North Carolina State University

April 24, 2023

Supported by NSF through awards DMS-1745654 and DMS 1953271.

John Darges (AMGSS) April 24, 2023 1 / 20

Inverse problem

Consider the problem

$$
\underset{\theta}{\arg \min} \ J(\theta), \quad J(\theta) := \|\mathbf{By}(\theta) - \mathbf{d}\|^2 \tag{1}
$$

where θ are unknown parameters, **y** is the solution to

$$
\begin{cases}\n\mathbf{y}' = f(\mathbf{y}; \boldsymbol{\theta}) \\
\mathbf{y}(t_0) = \mathbf{y}_0\n\end{cases}, \quad \mathbf{y} \in \mathbb{R}^d
$$
\n(2)

Observation operator **B** at each time selects only some of the responses from $y(t_i)$ corresponding to data available in array **d**

 290

K ロ ト K 何 ト K ヨ ト K

Bayesian context

Assume data measurement procedure involves i.i.d. random noise

$$
y_i(\boldsymbol{\theta}) - d_i \sim \pi_{\text{noise}}
$$

Noise model gives likelihood $\pi_{\text{like}}(\theta) = \pi(\mathbf{d}|\theta)$

Incorporate prior beliefs/assumptions about θ in prior distribution $\pi_{\text{prior}}(\theta)$

Bayes' rule:
$$
\pi_{\text{post}}(\theta) = \frac{\pi_{\text{like}}(\theta)\pi_{\text{prior}}(\theta)}{\int_{\mathbb{R}^n}\pi_{\text{like}}(\theta)\pi_{\text{prior}}(\theta)d\theta}
$$

 \leftarrow \leftarrow

 290

Posterior distribution in general constructed using Markov Chain Monte Carlo

GSA for Bayesian inverse problem

For Bayesian inference: Select a parameterized prior $\pi_{\text{prior}}(\theta; \xi)$ with hyperparameters ξ Consider $F(\mathcal{E})$, which maps hyperparameters to a statistic of the posterior for QoI $q(\theta)$

Goal: Study s[e](#page-2-0)nsitivity of $F(\xi)$ to prior hyperpar[am](#page-2-0)[et](#page-4-0)e[rs](#page-3-0)

Variance-based global sensitivity analysis

- **•** Consider a model $y = f(x)$ where $y \in \mathbb{R}$, and $x \sim \pi(x)$ has independently distributed entries
- Sobol' indices are invaluable tools for GSA which measure the contribution of each input to variance in model output:

$$
S_k := \frac{\mathrm{var}[f_k(x_k)]}{\mathrm{var}[f(\mathbf{x})]}, \quad S_k^{\mathcal{T}} := 1 - \frac{\mathrm{var}[\mathbb{E}(f(\mathbf{x})|x_j, j \neq k)]}{\mathrm{var}[f(\mathbf{x})]}
$$

 $f_k(x_k) := \int f(\mathbf{x})d\mathbf{x}_{-k} - \mathbb{E}(f\mathbf{x})$, where $d\mathbf{x}_{-k}$ denotes integrating over all inputs $\mathbf{except}\ x_k$

- **•** First order Sobol' index S_k measures influence of x_k outside of interactions
- Total Sobol' index $S_k^{\mathcal{T}}$ measures influence of x_k **including** interactions with other inputs

Related Work

- Robust Bayesian analysis tools to determine if posterior is robust to different priors in inference problems
- Hyper-differential sensitivity analysis (HDSA) has been used for Bayesian inverse problems to study measures of posterior uncertainty¹
- Derivative-based global sensitivity measures (DGSM) has been used to study the sensitivity of information gain to uncertain model parameters ²
- Variance-based GSA of function similar to $F(\xi)$. Emulated by Gaussian process, training data computed by MCMC ³

²A. Chowdhary, A. Alexanderian. Sensitivity Analysis of the Information Gain in Infinite-Dimensional Bayesian Linear Inverse Problems. 2023.

3 I. Vernon, J. P. Gosling. A Bayesian Computer Model Analysis of Robust Ba[yes](#page-4-0)i[an](#page-6-0) [An](#page-5-0)[al](#page-6-0)[yse](#page-0-0)[s.](#page-19-0) [20](#page-0-0)[22.](#page-19-0) 299 John Darges (AMGSS) April 24, 2023 6 / 20

¹I. Sunseri, A. Alexanderian, J. Hart, B. van Bloemen Waanders. Hyper-differential sensitivity analysis for nonlinear Bayesian inverse problems. 2022.

- Most statistics or measures of uncertainty require estimating an integral
- Evaluating $F(\xi)$ using MCMC for different ξ is expensive
- **Note:** π_{like} does not depend on ξ
- **Question:** Can we re-use likelihood evaluations for different \mathcal{E}' s?
- Yes, but we have to be careful about what distribution we integrate over!

Importance Sampling

Consider integrating the following by Monte Carlo integration

$$
\mathcal{F}_\mathrm{mean}(\boldsymbol{\xi}) = \int_{\mathbb{R}^n} q(\boldsymbol{\theta}) \pi_\mathrm{post}(\boldsymbol{\theta}; \boldsymbol{\xi}) d\boldsymbol{\theta}
$$

Sampling uniformly over \mathbb{R}^n will not work

Importance Sampling: Choose an auxiliary distribution π_{IS} to sample from

$$
\int_{\mathbb{R}^n} q(\boldsymbol{\theta}) \pi_{\text{post}}(\boldsymbol{\theta}; \boldsymbol{\xi}) d\boldsymbol{\theta} = \int_{\mathbb{R}^n} q(\boldsymbol{\theta}) \frac{\pi_{\text{post}}(\boldsymbol{\theta}; \boldsymbol{\xi})}{\pi_{\text{IS}}(\boldsymbol{\theta})} \pi_{\text{IS}}(d\boldsymbol{\theta}),
$$

 π _{IS} should be "close" to π _{post} for this to work

 298

K ロ ト K 何 ト K ヨ ト K

How to choose the auxiliary distribution

- For this scheme to work, π _{IS} should be "close" to $\pi_{\text{post}}(\xi)$ for all ξ
- Take $\pi_{IS} \propto \pi_{like} \pi_{prIS}$ where π_{prIS} is same class distribution as priors
- Building IS sample set requires one MCMC run
- Find hyperparameters for π_{prIS} by minimizing the total KL-divergence⁴:

$$
\boldsymbol{\xi}^* = \argmin_{\boldsymbol{\xi}} \sum_{i=1}^M \int_{\mathbb{R}^n} \log \Big(\frac{\pi_{\mathrm{IS}}(\boldsymbol{\theta}; \boldsymbol{\xi})}{\pi_{\mathrm{post}}(\boldsymbol{\theta}; \boldsymbol{\xi}_i)} \Big) \pi_{\mathrm{IS}}(\boldsymbol{\theta}; \boldsymbol{\xi}) d\boldsymbol{\theta}
$$

4 J. Zhang, M.D. Shields. On the quantification and efficient propagation of imprecise probabilities resulting from small datasets. 2017. 299 イロメ イ何 メイヨメ イヨメーヨー

John Darges (AMGSS) April 24, 2023 9 / 20

Importance sampling-Monte Carlo estimator

Estimate $F_{\text{mean}}(\xi)$ by Monte Carlo integration:

$$
\begin{aligned} \int_{\mathbb{R}^n} q(\boldsymbol{\theta}) \frac{\pi_{\text{post}}(\boldsymbol{\theta};\boldsymbol{\xi})}{\pi_{\text{IS}}(\boldsymbol{\theta})} \pi_{\text{IS}}(d\boldsymbol{\theta}) &= \frac{1}{\int_{\mathbb{R}^n} \frac{\pi_{\text{pr}}(\boldsymbol{\theta};\boldsymbol{\xi})}{\pi_{\text{prIS}}(\boldsymbol{\theta})} \pi_{\text{prIS}}(d\boldsymbol{\theta})} \int_{\mathbb{R}^n} q(\boldsymbol{\theta}) \frac{\pi_{\text{pr}}(\boldsymbol{\theta};\boldsymbol{\xi})}{\pi_{\text{prIS}}(\boldsymbol{\theta})} \pi_{\text{prIS}}(d\boldsymbol{\theta}) \\ &\approx \frac{1}{\sum_{j=1}^N \frac{\pi_{\text{pr}}(\boldsymbol{\theta}_j;\boldsymbol{\xi})}{\pi_{\text{prIS}}(\boldsymbol{\theta}_j)}} \sum_{j=1}^N q(\boldsymbol{\theta}_j) \frac{\pi_{\text{pr}}(\boldsymbol{\theta}_j;\boldsymbol{\xi})}{\pi_{\text{prIS}}(\boldsymbol{\theta}_j)}, \quad \boldsymbol{\theta}_j \sim \pi_{\text{IS}} \end{aligned}
$$

∢ □ ▶ ∢ 何 ▶ ∢ ∃

 290

When we change ξ , now we only need to re-evaluate the prior distribution

Proposed Method

- $\textbf{\textsf{D}}$ Build ISMC sample set $\{\bm{\theta}_j\}_{j=1}^N$ by sampling from π_{IS} using MCMC
- 2 Evaluate the Qol $q(\theta)$ at the sample points
- \bullet For hyperparameter samples $\{\boldsymbol{\xi}_i\}_{i=1}^M$, evaluate π_pr at samples $\{\boldsymbol{\theta}_j\}_{j=1}^N$
- $\textcolor{black}{\bullet}$ Estimate by Monte Carlo integration $\{\mathit{F}(\bm{\theta}_j)\}_{j=1}^N$
- $\textbf{5}$ Use $\{\mathcal{F}(\bm{\theta}_j)\}_{j=1}^N$ to estimate Sobol' indices (surrogate-assisted or sampling)

Assuming the likelihood is expensive to evaluate, the costliest step is the first one

Example: Fitting Noisy Data to a Line

- Fit data to $y = mx + b$
- **•** Estimate $\theta = (m, b)$
- $b = -1$, $m = 2$
- Noise is i.i.d. normally distributed with $\sigma^2=1$
- Likelihood and prior are Gaussian \implies posterior is Gaussian and can be analytically computed

Parameter estimation with MCMC

John Darges (AMGSS) April 24, 2023 13 / 20

Problem Setup

- Prior is Gaussian with $\xi = (\mu, \Gamma)$
- Nominal $\mu = \begin{bmatrix} 2.4 \ 1 \end{bmatrix}$ −1.4 1 Nominal $\mathsf{\Gamma} = \left[\begin{array}{cc} 1 & 0 \ 0 & 1 \end{array} \right]$
- We let the hyperparameters vary by $\pm 50\%$ of the respective nominal value

Consider two different QoIs

• Linear:
$$
q(\theta) = \theta^\top \begin{bmatrix} 5 \\ 1 \end{bmatrix}
$$

• Nonlinear:
$$
q(\theta) = \theta^\top \theta
$$

• We are interested in both the posterior means and variances

1

• These can be analytically computed for both QoIs

 Ω

ISMC total convergence for linear QoI

Do estimates of $F(\xi)$ converge on average for different choices of ξ ?

ISMC GSA for linear QoI

We use a polynomial chaos surrogate model and compare to true indices

ISMC total convergence for nonlinear QoI

Do estimates of $F(\xi)$ converge on average for different choices of ξ ?

ISMC GSA for nonlinear QoI

We use a polynomial chaos surrogate model and compare to true indices

Nonlinear Bayesian inverse problems

Applying the method to nonlinear problems introduces more challenges:

- Model is a "black-box"
- Nothing to compare our results against
- **•** Efficiently sampling from π _{IS} by MCMC could be difficult
- Importance sampling could fail for some priors

- ¹ I. Sunseri, A. Alexanderian, J. Hart, B. van Bloemen Waanders. Hyper-differential sensitivity analysis for nonlinear Bayesian inverse problems. 2022.
- ² A. Chowdhary, A. Alexanderian. Sensitivity Analysis of the Information Gain in Infinite-Dimensional Bayesian Linear Inverse Problems. 2023.
- ³ I. Vernon, J. P. Gosling. A Bayesian Computer Model Analysis of Robust Bayesian Analyses. 2022.
- ⁴ J. Zhang, M.D. Shields. On the quantification and efficient propagation of imprecise probabilities resulting from small datasets. 2017.
- ⁵ S. Tokdar, R. Kass, Importance sampling: A review. 2010.
- ⁶ J. O. Berger, D. R. Insua, F. Ruggeri. Bayesian Robustness. 2000.

그 그는 그

 QQ

◆ロト → 何ト → ヨト → ヨト