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Inverse problem

Consider the problem

arg min J(8), J(6) :=|By(6) —d? (1)

where 0 are unknown parameters, y is the solution to

y' =f(y;0)
{y(to)zyo  yER @)

Observation operator B at each time selects only some of the responses from y(t;)
corresponding to data available in array d
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Bayesian context

Assume data measurement procedure involves i.i.d. random noise
Yi(0) — di ~ Taoise
Noise model gives likelihood mj.(0) = 7(d|0)
Incorporate prior beliefs/assumptions about 8 in prior distribution mpyior(6)

_ Tiike(8)Tprior(6)
fR" 7rlike(0)71—prior(9)d9

Posterior distribution in general constructed using Markov Chain Monte Carlo

Bayes’ rule: mp.:(0)
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GSA for Bayesian inverse problem

For Bayesian inference: Select a parameterized prior mprior(6; &) with hyperparameters £
Consider F(&), which maps hyperparameters to a statistic of the posterior for Qol q(8)

Select
hyperparameters

3

Prior
distribution for @ [—  Mode! (2)
Bayesian inverse Posterior Posterior
problem ™1 distribution for 8 ™| distribution for q(8)
Experimental Posterior
data variance var[q(8)]

Goal: Study sensitivity of F(&) to prior hyperparameters
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Variance-based global sensitivity analysis

e Consider a model y = f(x) where y € R, and x ~ 7(x) has independently distributed
entries

Sobol’ indices are invaluable tools for GSA which measure the contribution of each input
to variance in model output:

5 YAGK] o varlB(FG) by, S # K]

— var[f(x)]’ var[f(x)]
o fi(xk) f f(x)dx_x —E(fx), where dx_j denotes integrating over all inputs except x
@ First order Sobol’ index S, measures influence of x, outside of interactions

Total Sobol" index S measures influence of xi including interactions with other inputs
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N
Related Work

@ Robust Bayesian analysis - tools to determine if posterior is robust to different priors in
inference problems

e Hyper-differential sensitivity analysis (HDSA) has been used for Bayesian inverse problems
to study measures of posterior uncertainty®

@ Derivative-based global sensitivity measures (DGSM) has been used to study the
sensitivity of information gain to uncertain model parameters 2

@ Variance-based GSA of function similar to F(&). Emulated by Gaussian process, training
data computed by MCMC 3

!I. Sunseri, A. Alexanderian, J. Hart, B. van Bloemen Waanders. Hyper-differential sensitivity analysis for
nonlinear Bayesian inverse problems. 2022.
2A. Chowdhary, A. Alexanderian. Sensitivity Analysis of the Information Gain in Infinite-Dimensional
Bayesian Linear Inverse Problems. 2023.
%]. Vernon, J. P. Gosling. A Bayesian Computer Model Analysis of Robust Bayesian Analyses. 2022.
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N
Method

@ Most statistics or measures of uncertainty require estimating an integral

Evaluating F(&) using MCMC for different £ is expensive

@ Note: 7y does not depend on &

Question: Can we re-use likelihood evaluations for different £'s?

@ Yes, but we have to be careful about what distribution we integrate over!
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Importance Sampling

Consider integrating the following by Monte Carlo integration
Fuean 5) fRn 7rpost 0 5)
Sampling uniformly over R" will not work

Importance Sampling: Choose an auxiliary distribution 715 to sample from

Jrn A(O)Tp0st (0: £)d0 = [, q(6) 72228 714(d),

ms should be “close” to 7yt for this to work
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How to choose the auxiliary distribution

For this scheme to work, g should be “close” to mpest(&) for all €
Take 715 X TikeTpr1s Where 7,15 is same class distribution as priors

Building IS sample set requires one MCMC run

Find hyperparameters for 7,15 by minimizing the total KL-divergence*:

_argmmZ/ log M)ms(&&)de

). Zhang, M.D. Shields. On the quantification and efficient propagation of imprecise probabilities resulting
from small datasets. 2017.
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Importance sampling-Monte Carlo estimator

Estimate Fiean(&) by Monte Carlo integration:

0 Wpost(a;s) 0 1 0 Wpr(e;g) . 0
/nq( ) m1s(0) mis(d6) = Jian :rrprl(: 5)7rpﬂs(d0)/ 7 Tpr1s(0) morts(96)
N 7Tpr 0 5)

~ (6)) 0 ~m
N 7pe(6; > al j~ s
ZJ 1 :ﬁrls(efg = WprIS(e )

When we change &, now we only need to re-evaluate the prior distribution
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-
Proposed Method

@ Build ISMC sample set {OJ} ', by sampling from g using MCMC
@ Evaluate the Qol g(@) at the sample points

© For hyperparameter samples {£;}M,, evaluate 7, at samples {01-}]'\’:1
@ Estimate by Monte Carlo integration {F(6;)}V i1

Q Use {F(0))}V =1 to estimate Sobol’ indices (surrogate-assisted or sampling)

Assuming the likelihood is expensive to evaluate, the costliest step is the first one
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-
Example: Fitting Noisy Data to a Line

Fitdatatoy =mx+ b o

°
3
e Estimate @ = (m, b)
e b=—-1 m=2 2 °
@ Noise is i.i.d. normally distributed with 1|
o?=1

@ Likelihood and prior are Gaussian —
posterior is Gaussian and can be Al
analytically computed o
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]
Parameter estimation with MCMC

5000 10000 15000

5000 10000 15000
lteration Iteration

John Darges (AMGSS) April 24, 2023 13 /20



.
Problem Setup

o Consider two different Qols
@ Prior is Gaussian with & = (i, ) nstaer two dimer n5Q
24 o Linear: q(#) =6" [ ]
oNominaIp:[_14] 1
. 0 e Nonlinear: q(0) =676
@ Nominal ' = { 01 } @ We are interested in both the posterior
means and variances
@ We let the hyperparameters vary by +50% _
@ These can be analytically computed for

of the respective nominal value
both Qols
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ISMC total convergence for linear Qol

Do estimates of F(&) converge on average for different choices of £7
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Figure: Fiean(&) for the linear Qol Figure: Fy,, (&) for the linear Qol
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]
ISMC GSA for linear Qol

We use a polynomial chaos surrogate model and compare to true indices
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Figure: Total indices of Fcan(&) for the linear Qol  Figure: Total indices of Fy,, (&) for the linear Qol
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ISMC total convergence for nonlinear Qol

Do estimates of F(&) converge on average for different choices of £7
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Figure: Fean(&) for the nonlinear Qol Figure: Fya, (&) for the nonlinear Qol
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]
ISMC GSA for nonlinear Qol

We use a polynomial chaos surrogate model and compare to true indices
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Figure: Total indices of Fean(&) for the nonlinear  Figure: Total indices of Fy,, (&) for the nonlinear
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Nonlinear Bayesian inverse problems

Applying the method to nonlinear problems introduces more challenges:
o Model is a “black-box"
@ Nothing to compare our results against
o Efficiently sampling from mg by MCMC could be difficult

@ Importance sampling could fail for some priors
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