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Parameter estimation with SEIR model

o The SEIR model! is a compartmental epidemiology model that describes the outbreak of
an epidemic in a population

S=puN-— BSI/N — uS, (Susceptible)
E=BSI/N— (o +pn)E,  (Exposed),
| =0E—(v+ ), (Infected),
R =~I— uR, (Recovered).

@ The total population size stays constant at N = S(t) + E(t) + /(t) + R(t)
o Model parameters @ =[ u B o ~]'

!H.W. Hethcote. The Mathematics of Infectious Diseases. 2000.
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SEIR dynamics
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Goal-oriented parameter estimation
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Inverse problem

A deterministic inverse problem? has the form

min J() := [|By(6) — d|I*, (2)
where y is the solution to

{ y' =f(y:0)

d
yiw) =yo TS ©)

Observation operator B at each measurement time selects only some of the responses from
y(t;) corresponding to data measurements available in array d

2A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimations 2005.
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In the Bayesian context

Assume data measurements contain uncertainty as i.i.d. random noise
.yl(o) — d; ~ Toise
Bayesian inverse problem treats @ as a random variable (RV)

Noise model gives likelihood m);.(d|@) incorporates uncertainty in data

Prior distribution 7, (6) summarizes our beliefs or assumptions about parameters before
measuring data

Combine prior beliefs/assumptions with data to create a posterior distribution for 6

, Tlike(d|6)mp: (6
Bayes’ rule: m.4(60|d) = fm.ke((d“a))ﬂp((B))dB
ike pr

Note: A quantity of interest q(0) (e.g. Ro) becomes a RV with a posterior
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Impact of uncertainty in the prior

@ Uncertainty does not just come from the data

@ Suppose some hyperparameters & parameterize the prior distribution 7, = Wgr
e E.g. if prior is log-normal, log(8) ~ N (m,s?), then é = [ m s ]T

o Typically, & is uncertain

Question: How does uncertainty in the prior assumptions affect our estimation of the Qol?
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N
Related Work

@ Robust Bayesian analysis® studies robustness to different priors in inference problems

e Hyper-differential sensitivity analysis (HDSA) has been used for Bayesian inverse problems
to study measures of posterior uncertainty in* and®

@ Derivative-based global sensitivity measures (DGSM) has been used to study the
sensitivity of information gain to uncertain model parameters®

@ Prior and model hyperparameter sensitity in variance-based framework. Emulated by
Gaussian process, training data computed by MCMC’

3J. O. Berger, D. R. Insua, F. Ruggeri. Bayesian Robustness. 2000.

4I, Sunseri, A. Alexanderian, J. Hart, B. van Bloemen Waanders. Hyper-differential sensitivity analysis for nonlinear Bayesian inverse problems. 2022.

5W. Reese, A. Saibaba, J. Hart, B. van Bloeman Waanders, M. Perego, J. Jakeman. Hyper-differential sensitivity analysis in the context of Bayesian inference
applied to ice-sheet problems. 2022.

6A. Chowdhary, A. Alexanderian, S. Tong, G. Stadler. Sensitivity Analysis of Information Gain in Infinite-Dimensional Bayesian Linear Inverse Problems. 2023.

7I, Vernon, J. P. Gosling. A Bayesian Computer Model Analysis of Robust Bayesian Analyses. 2022.
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Hyperparameter-to-statistic mapping

o Let F(&) map prior hyperparameters to posterior statistic of Qol q(8)
o Eg. Fu(§) = Vargost(q). Fean(§) = Egost(q)

Select
hyperparameters
3

Prior
distribution for 8 [ Model
Bayesian inverse Posterior Posterior
problem | distribution for ® [ distribution for q(8)
Experimental Posterior
data variance var{q(8)]

e Goal: Study sensitivity of F(&) to prior hyperparameters
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Variance-based global sensitivity analysis

o Let Y = F(&) where Y € R, and & ~ D has independently distributed entries
@ Sobol’ indices® quantify the contribution of each input to variance in model output:
varlRl&)] o, varlE(F()Ig, K]
var[F(€)] © 7 var[F(§)]

Fi(&k) :== [ F(&)d&_, — E(FE), where d€_, denotes integration over inputs except &,

First order Sobol" index S, measures influence of £, outside of interactions

@ Total Sobol" index S,Z— measures influence of £, including interactions with other inputs

8C. Prieur, S. Tarantola. Variance-based sensitivity analysis: Theory and estimation algorithms. 2017.
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-
Computing Sobol” indices of F(&) - Challenges

1. Estimating Sobol' indices Sk, S/ requires thousands of evaluations of F(¢&)

2. Evaluating F(&) requires thousands of evaluations of 7(d|@) (involves e.g. solving ODE
model)

o Evaluating F(&) requires sampling from wgost with Markov Chain Monte Carlo (MCMC) run

e Each MCMC run can require thousands of evaluations of mjk.(d|8)

@ Thousands x Thousands = Too expensive!

o ldea: Likelihood does not change when £ changes

@ Can we recycle likelihood evaluations when we look at different &'s?
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Example of evaluating every F(&) with MCMC

Simple case where one prior hyperparameter changes

30
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+ MCMC

| [—PCE MCMC

= =An.

(a) 100 iterations per MCMC run

30

+ MCMC

| |=—=PCE MCMC

= =An.

(b) 1000 iterations per MCMC run
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Importance sampling

Importance sampling® uses re-weighted samples from an auxiliary distribution 75 to integrate
over . Without sampling from it

3
. £ o M ost(o)
Fuasan(©) = | a(O)S0a(0) d0 = [ a(0) % Smis(6) o
N 7Tgos‘c(aj) (4)
%Zq 0; ENCOR 0; ~ s

We can reuse the same sample set to approximate F(&) for every choice of &
Can we avoid re-evaluating mj(d|@) on the sample set when we change &7

°S. Tokdar, R. Kass, Importance sampling: A review. 2010.
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Importance sampling tailored to Bayesian inverse problems

Let the importance sampling distribution be

13(6) = Tpest (8]d) o< Mike(d]6) - 712 (6), (5)

We let 7TIS belong to the same parameterized family as 7r§r

Because mike(d|@) appears in the expressions of ﬂpost and ﬂpost, we get convenient cancellation

£
Thost Tike * 7T§r _ 7r[€)r 6
s X S T IS (6)
7I-post like pr pr
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Importance sampling estimator

Estimate Fiean(&) by Monte Carlo integration:

7 (6
Fmean(&) = /n q(e) pOStEO; (0) do
1 7rpr(0)
& L, 90 gy msto) g0 )
~ 1 7Tplr(ej) oIS
~ E_; P q(9 )WIIE(OJ) 01 Thost

—~ ¢
where Cp = ZJN 1 WPYEZ; estimates the ratio Cp of normalization constants of 7Tpost and 7¢

post
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How to choose the importance sampling prior

I

How do we choose 7, S so that ﬂ'post is a good for all our choices of £7

We want the “high-density region” of 7T to cover the high-density regions of every 7r§Ir
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Using a diagnostic to choose the importance sampling prior

e A common diagnostic!? for importance sampling is seeing if the following quantity is small

[ )= [0

post post ( 0 )

Note the following bound on this

(75a(0) (M2 [ (75(0))2
/pll)istw)d0< (C£> /(WII)Sr((e)))dB’ M :mg\xyrhke(d‘g)‘ (9)

. close to s

@ This suggests that 7r S close to ﬂgr will mean 7% post

pos

9A.B. Owen. Monte Carlo theory, methods and examples. 2013.
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|
Algorithm

@ Find W%E which minimally varies from all 7T§r

@ Sample {6}/, from 7}

post using one MCMC run

@ Fori=1,...,M compute IS estimator of F(&;)

© Build/train surrogate models (PCE'! and ELM!2) of F(&) from {&;, F(&;)}M to
estimate Sobol’ indices

Use two surrogate methods to validate results
Most expensive step is second step

1A Doostan, J. Hampton. Compressive Sampling Methods for Sparse Polynomial Chaos Expansions. 2017.
2. Darges, A. Alexanderian, P. Gremaud. Extreme learning machines for variance-based global sensitivity
analysis. 2022.
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Prior hyperparameter uncertainty in SEIR problem

@ Recall basic reproductive number

- B o
RO T ytpotp 200 ¢
@ We assume a log-normal prior on 8 fgaut:'vmde'
O=[u B v o] since parameters 5o .
are positive
o log(0) ~ N(m, X) defines £ by 3
5100 .
&1 & 0 0 0 = .
&2 0 & 0 O 501 o
m = s p—
&3 0 0 & O
54 0 0 0 fg 0 ‘ ‘ ‘
0 50 100 150 200
e Uncertain & ~ U([aj, bj]) are uniformly Time (days)

distributed
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Effectiveness of importance sampling

e Optimal 775 takes mean at the
nominal mean hyperparameters
and wider variance

@ High density region W%)%St covers

high density regions of every wgost

@ How many MCMC samples are
needed for accurate Sobol’ indices
of F(&)7
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ELM surrogate:

PCE surrogate:

Total Sobol' Index
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ELM surrogate:

PCE surrogate:

Total Sobol' Index
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Prior hyperparameter importance
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Uncertainty caused by influential prior hyperparameters
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Conclusion

@ Showed that the solution to Bayesian inverse problems has complicated dependence on
prior hyperparameters

Developed feasible method for understanding effects of uncertainty in prior
hyperparameters!3

For future work, explore high dimensional Bayesian inverse problems

Explore ways to broaden framework to include other hyerparameters

13). Darges, A. Alexanderian, P. Gremaud. Variance-based sensitivity of Bayesian inverse problems to the
prior distribution. 2023.
Ry
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