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Parameter estimation with SEIR model

The SEIR model1 is a compartmental epidemiology model that describes the outbreak of
an epidemic in a population

Ṡ = µN − βSI/N − µS, (Susceptible)
Ė = βSI/N − (σ + µ)E , (Exposed),
İ = σE − (γ + µ)I, (Infected),

Ṙ = γI − µR , (Recovered).

(1)

The total population size stays constant at N = S(t) + E(t) + I(t) + R(t)
Model parameters θ = [ µ β σ γ ]>

1H.W. Hethcote. The Mathematics of Infectious Diseases. 2000.
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SEIR dynamics
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Goal-oriented parameter estimation

Suppose we have noisy data on infections
Goal: find basic reproductive number
R0 = β

γ+µ
σ

σ+µ

R0 measures how many secondary
infection each infection causes on average.
First we must estimate model parameters
θ = [ µ β σ γ ]>
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Inverse problem

A deterministic inverse problem2 has the form

min
θ

J(θ) := ‖By(θ)− d‖2, (2)

where y is the solution to {
y ′ = f (y ;θ)
y(t0) = y0

, y ∈ Rd . (3)

Observation operator B at each measurement time selects only some of the responses from
y(ti) corresponding to data measurements available in array d

2A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation. 2005.
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In the Bayesian context

Assume data measurements contain uncertainty as i.i.d. random noise
yi(θ)− di ∼ πnoise

Bayesian inverse problem treats θ as a random variable (RV)
Noise model gives likelihood πlike(d|θ) incorporates uncertainty in data
Prior distribution πpr(θ) summarizes our beliefs or assumptions about parameters before
measuring data
Combine prior beliefs/assumptions with data to create a posterior distribution for θ

Bayes’ rule: πpost(θ|d) =
πlike(d|θ)πpr(θ)∫
πlike(d|θ)πpr(θ)dθ

Note: A quantity of interest q(θ) (e.g. R0) becomes a RV with a posterior
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Impact of uncertainty in the prior

Uncertainty does not just come from the data
Suppose some hyperparameters ξ parameterize the prior distribution πpr = πξ

pr

E.g. if prior is log-normal, log(θ) ∼ N (m, s2), then ξ =
[

m s
]>

Typically, ξ is uncertain

Question: How does uncertainty in the prior assumptions affect our estimation of the QoI?
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Related Work

Robust Bayesian analysis3 studies robustness to different priors in inference problems

Hyper-differential sensitivity analysis (HDSA) has been used for Bayesian inverse problems
to study measures of posterior uncertainty in4 and5

Derivative-based global sensitivity measures (DGSM) has been used to study the
sensitivity of information gain to uncertain model parameters6

Prior and model hyperparameter sensitity in variance-based framework. Emulated by
Gaussian process, training data computed by MCMC7

3J. O. Berger, D. R. Insua, F. Ruggeri. Bayesian Robustness. 2000.
4I. Sunseri, A. Alexanderian, J. Hart, B. van Bloemen Waanders. Hyper-differential sensitivity analysis for nonlinear Bayesian inverse problems. 2022.
5W. Reese, A. Saibaba, J. Hart, B. van Bloeman Waanders, M. Perego, J. Jakeman. Hyper-differential sensitivity analysis in the context of Bayesian inference

applied to ice-sheet problems. 2022.
6A. Chowdhary, A. Alexanderian, S. Tong, G. Stadler. Sensitivity Analysis of Information Gain in Infinite-Dimensional Bayesian Linear Inverse Problems. 2023.
7I. Vernon, J. P. Gosling. A Bayesian Computer Model Analysis of Robust Bayesian Analyses. 2022.
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Hyperparameter-to-statistic mapping

Let F (ξ) map prior hyperparameters to posterior statistic of QoI q(θ)
E.g. Fvar(ξ) = varξpost(q), Fmean(ξ) = Eξ

post(q)

Goal: Study sensitivity of F (ξ) to prior hyperparameters
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Variance-based global sensitivity analysis

Let Y = F (ξ) where Y ∈ R, and ξ ∼ D has independently distributed entries

Sobol’ indices8 quantify the contribution of each input to variance in model output:

Sk :=
var[Fk(ξk)]

var[F (ξ)] , ST
k := 1 −

var[E(F (ξ)|ξj , j 6= k)]
var[F (ξ)]

Fk(ξk) :=
∫

F (ξ)dξ−k − E(Fξ), where dξ−k denotes integration over inputs except ξk

First order Sobol’ index Sk measures influence of ξk outside of interactions

Total Sobol’ index ST
k measures influence of ξk including interactions with other inputs

8C. Prieur, S. Tarantola. Variance-based sensitivity analysis: Theory and estimation algorithms. 2017.
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Computing Sobol’ indices of F (ξ) - Challenges

1. Estimating Sobol’ indices Sk ,ST
k requires thousands of evaluations of F (ξ)

2. Evaluating F (ξ) requires thousands of evaluations of π(d|θ) (involves e.g. solving ODE
model)

Evaluating F (ξ) requires sampling from πξ
post with Markov Chain Monte Carlo (MCMC) run

Each MCMC run can require thousands of evaluations of πlike(d|θ)

Thousands × Thousands = Too expensive!

Idea: Likelihood does not change when ξ changes
Can we recycle likelihood evaluations when we look at different ξ’s?
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Example of evaluating every F (ξ) with MCMC
Simple case where one prior hyperparameter changes
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Importance sampling

Importance sampling9 uses re-weighted samples from an auxiliary distribution πIS to integrate
over πξ

post without sampling from it

Fmean(ξ) =

∫
Rn

q(θ)πξ
post(θ) dθ =

∫
Rn

q(θ)
πξ

post(θ)

πIS(θ)
πIS(θ) dθ

≈
N∑

j=1
q(θi)

πξ
post(θj)

πIS(θj)
, θj ∼ πIS

(4)

We can reuse the same sample set to approximate F (ξ) for every choice of ξ
Can we avoid re-evaluating πlike(d|θ) on the sample set when we change ξ?

9S. Tokdar, R. Kass, Importance sampling: A review. 2010.
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Importance sampling tailored to Bayesian inverse problems

Let the importance sampling distribution be

πIS(θ) := πIS
post(θ|d) ∝ πlike(d|θ) · πIS

pr(θ), (5)

We let πIS
pr belong to the same parameterized family as πξ

pr

Because πlike(d|θ) appears in the expressions of πξ
post and πIS

post, we get convenient cancellation

πξ
post

πIS
post

∝ πlike · πξ
pr

πlike · πIS
pr

=
πξ

pr
πIS

pr
(6)
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Importance sampling estimator

Estimate Fmean(ξ) by Monte Carlo integration:

Fmean(ξ) =

∫
Rn

q(θ)
πξ

post(θ)

πIS
post(θ)

πIS(θ) dθ

=
1

CP

∫
Rn

q(θ)π
ξ
pr(θ)

πIS
pr(θ)

πIS(θ) dθ

≈ 1
ĈP

N∑
j=1

q(θi)
πξ

pr(θj)

πIS
pr(θj)

, θj ∼ πIS
post,

(7)

where ĈP =
∑N

j=1
πξ

pr(θj)
πIS

pr(θj)
estimates the ratio CP of normalization constants of πIS

post and πξ
post
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How to choose the importance sampling prior

How do we choose πIS
pr so that πIS

post is a good for all our choices of ξ?

πIS
pr

π
ξ1pr

π
ξ2pr

We want the “high-density region” of πIS
pr to cover the high-density regions of every πξ

pr
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Using a diagnostic to choose the importance sampling prior

A common diagnostic10 for importance sampling is seeing if the following quantity is small∫ (πξ
post(θ)

π
IS(θ)
post

− 1
)2

πIS
post(θ) dθ =

∫
(πξ

post(θ))
2

πIS
post(θ)

dθ − 1 (8)

Note the following bound on this∫
(πξ

post(θ))
2

πIS
post(θ)

dθ ≤
(M

Cξ

)2 ∫ (πξ
pr(θ))2

πIS
pr(θ)

dθ, M = max
θ

πlike(d|θ). (9)

This suggests that πIS
pr close to πξ

pr will mean πIS
post close to πξ

post

10A.B. Owen. Monte Carlo theory, methods and examples. 2013.
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Algorithm

1 Find πIS
pr which minimally varies from all πξ

pr

2 Sample {θj}N
j=1 from πIS

post using one MCMC run

3 For i = 1, . . . ,M compute IS estimator of F (ξi)

4 Build/train surrogate models (PCE11 and ELM12) of F (ξ) from {ξi ,F (ξi)}M
i=1 to

estimate Sobol’ indices
Use two surrogate methods to validate results
Most expensive step is second step

11A. Doostan, J. Hampton. Compressive Sampling Methods for Sparse Polynomial Chaos Expansions. 2017.
12J. Darges, A. Alexanderian, P. Gremaud. Extreme learning machines for variance-based global sensitivity

analysis. 2022.
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Prior hyperparameter uncertainty in SEIR problem

Recall basic reproductive number
R0 = β

γ+µ
σ

σ+µ

We assume a log-normal prior on
θ = [ µ β γ σ ]> since parameters
are positive
log(θ) ∼ N (m,Σ) defines ξ by

m =


ξ1
ξ2
ξ3
ξ4

 , Σ =


ξ5 0 0 0
0 ξ6 0 0
0 0 ξ7 0
0 0 0 ξ8


Uncertain ξi ∼ U([ai , bi ]) are uniformly
distributed
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Effectiveness of importance sampling

Optimal πIS
pr takes mean at the

nominal mean hyperparameters
and wider variance

High density region πIS
post covers

high density regions of every πξ
post

How many MCMC samples are
needed for accurate Sobol’ indices
of F (ξ)?
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Convergence study for Fmean(ξ) = Eξ
post(R0)

ELM surrogate:

PCE surrogate:
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Convergence study for Fvar(ξ) = varξpost(R0)

ELM surrogate:

PCE surrogate:
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Prior hyperparameter importance

Fmean(ξ) = Eξ
post(R0):

Fvar(ξ) = varξpost(R0):
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Uncertainty caused by influential prior hyperparameters
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Conclusion

Showed that the solution to Bayesian inverse problems has complicated dependence on
prior hyperparameters

Developed feasible method for understanding effects of uncertainty in prior
hyperparameters13

For future work, explore high dimensional Bayesian inverse problems

Explore ways to broaden framework to include other hyerparameters

13J. Darges, A. Alexanderian, P. Gremaud. Variance-based sensitivity of Bayesian inverse problems to the
prior distribution. 2023.
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