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1 Introduction

Sub-Riemannian geometry is a natural generalization of Riemannian geometry in which
a Riemannian structure is imposed only partially onto a manifold. As such, one can
actually think of Riemannian geometry as a special case of Riemannian geometry. In
simple terms, we can think of imposing a Riemannian structure on a smooth manifold
M as defining scalar product onto the tangent bundle TM . We call this product
a Riemannian metric and it is defined with vector fields, which can be thought as
functions existing within the tangent bundle, as its inputs. Thus, the length of a
vector field defines a function on the manifold M . Crucially, the metric is represented
as a very specific class of square matrix, that is symmetric and positive definite. This
matrix is always invertible since the metric is defined to positive definite everywhere
on the tangent bundle. In sub-Riemannian geometry, we have a metric that only
satisfies the characteristics of being a metric on a portion of the tangent bundle. This
portion forms a sub-bundle of the tangent bundle and is referred to as the collection
of distributions since the fibers of this sub-bundle are called distributions. Therefore,
unless we are studying the Riemannian case, the bundle rank of the set of distributions
is always less than that of the tangent bundle. This sub-bundle depends on the choice of
metric. The representation of the metric as a matrix is key here. We choose symmetric
matrices which are not invertible and thus not everywhere positive definite. Therefore,
the set of distributions always excludes the kernel of this matrix.
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Figure 3.0: Tangent to a sphere

There has developed a close correspondence between the areas of sub-Riemannian ge-
ometry and optimal control theory. We will take a look at optimal control theory in
a later portion of this paper. In brief, optimal control theory studies optimization
problems of systems of differential equations where only certain solution curves in the
target space are deemed admissible. We can see an analogy here with sub-Riemannian
geometry in that only certain velocity vectors in our tangent bundle are contained
within distributions. From this, we much of the language of sub-Riemannian geometry
will follow the language of control theory. The correspondence exists in that geometric
control problems are studied within the context of sub-Riemannian geometry. Ad-
ditionally, problems in sub-Riemannian geometry, particularly that of characterizing
length-minimizing curves can be expressed in the manner of control theory.

While we have talked about the core of sub-Riemannian structure existing as sub-
bundles of the tangent bundle, there exist generalizations of sub-Riemannian structure
that define it through arbitrary Euclidean bundles. We will first define sub-Riemannian
structure in the most general context, though, for practical purposes, the cases we
will think of will be sub-bundles of the tangent bundle, as this is the easiest case to
conceptualize. After defining sub-Riemannian structure, we will see that most concepts
of Riemannian geometry readily generalize and that the same core theorems also hold
in the more general case. Finally, we will explore one of the relationships between
control theory and sub-Riemannian geometry.

2 Sub-Riemannian Structure

2.1 Defining sub-Riemannian Structure

Before defining sub-Riemannian structure, we must first cover the important concept
of being bracket-generating. Given a family of vector fields F on a smooth manifold
M , the Lie algebra generated by F is denoted LieF . F is called bracket-generating
if LiepF = TpM for every p ∈ M , where LiepF denotes the set of vector fields of LieF
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fixed at p. LieF has step k if span{[X1(p), ...[Xj−1(p), Xj(p)]] : Xi ∈ F , j ≤ k} = TpM
for all p ∈M . Note that the step can depend on our choice of p.

Now we give the general definition of a sub-Riemannian structure on a smooth
manifold M .

A sub-Riemannian structure on M is a triple (U, f, g) where

i) U is a Euclidean bundle such that a scalar product g(·, ·)p, the sub-Riemannian
metric, is defined on each fiber Up, for all p ∈M . Naturally, since our bundle is
Euclidean, we can associate a matrix gij to our metric.

ii) f is a function U → TM that is linear on each fiber Up and π ◦ f = πU , where
π : TM →M and πU : U →M are the canonical projections.

iii) Vector fields f(σ), where σ : M → U is a smooth section, are referred to as
horizontal vector fields. The set of all horizontal vector fields, D ⊂ TM , of a
sub-Riemannian structure is, by definition, bracket-generating. The step of the
sub-Riemannian structure is the step of D.

iv) The distribution of the structure is the collection of subspaces {Dp}p∈M where
Dp = f(Up) ⊂ TpM . The sub-Riemannian length of a vector V ∈ Dp is given by
‖V ‖ = min{g(X,X)p : V = f(X), X ∈ Up}.

This generalized definition is quite intimidating, so we will consider a specific case
of sub-Riemannian structure to give a clearer picture. From our definition, let U be
a sub-bundle of TM such that the smooth sections of U (which are vector fields), are
bracket-generating. We let f be the inclusion map ι : U → TM , which clearly satisfies
the conditions above. When U = TM , this results in a Riemannian structure as, after
all, sub-Riemannian geometry is a generalization. To have interesting cases, we will
take U to be a proper sub-bundle. So, our metric will only be positive-definite on
U , meaning that, as a matrix, gij will have non-trivial kernel and thus will not be
invertible. Finally, we can see that the set of horizontal vector fields is just U itself
while the distribution is the collection of fibers of U .

3



In essence, we can think of imposing a sub-Riemannian structure as being able to
impose a Riemannian structure on only part of the tangent bundle of M . The purpose
of having the generalized definition is, however, to study cases of sub-Riemannian
manifolds with singularities where our horizontal vector fields may have singularities.
In this case, we must introduce a measure for well-defined integration and volume. This
results in an intersection with an area of study known as geometric measure theory.
An example of measures we can define are Hausdorff measures : for a subset E ⊂M ,

i) the α−dimensional Hausdorff measure is defined as Hα(E) = lim
ε→0+

Hα
ε (E)

where

Hα
ε (E) = inf

{
∞∑
i=1

diam(Hi)
α : E ⊂

∞⋃
i=1

Hi, Hi nonempty s.t. diam(Hi) < ε

}
ii) the α−dimensional spherical Hausdorff measure is defined as Sα(E) =

lim
ε→0+

Sαε (E), where

Sαε (E) = inf

{
∞∑
i=1

diam(Si)
α : E ⊂

∞⋃
i=1

Si, Si open ball s.t. diam(Si) < ε

}
However, it is only important here to keep in mind that we have a concept of measur-
ability for functions mapping from or onto M .

2.2 Curves in sub-Riemannian Manifolds

Now, we discuss the types of curves we find interesting in sub-Riemannian geometry.
A horizontal curve is a Lipschitz curve γ : [0, 1] → M for which there exists some
measurable and essentially bounded function u : [0, 1]→ U such that t 7→ u(t) ∈ Uγ(t)

such that γ′(t) = u(t) a.e. on [0, 1]. Moreover, u is called a control with respect to γ
and may not be unique. An important remark is this: even if, for some curve γ, γ′(t)
lies in the distribution for almost every t ∈ [0, 1], the function u(t) = γ′(t) may not be
essentially bounded and thus γ possibly not horizontal.

Now, given a horizontal curve γ, define pointwise for every point of differentiability
of γ a function, um by

um(t) = argmin{g(u, u)γ(t) : u ∈ Uγ(t), γ
′(t) = f(u)}

By Lemma 3.12 in [1], um is essentially bounded and measurable and therefore a control
of γ. We call this the minimal control of γ. This, along with our notion of the length
of a vector, allows us to have a definition for the length of a curve that satisfies our
Riemannian instincts:

L(γ) =

∫ 1

0

‖γ′(t)‖dt =

∫ 1

0

g(um(t), um(t))γ(t)dt

This definition gives us length which is invariant under reparametrization and gives us
a notion of arc-length parametrization.

4



3 Sub-Riemannian Manifolds as Metric Spaces

3.1 Distance and Rashevskii-Chow Theorem

Finally, we now have the tools needed to define a distance, known as the Caratheodory-
Carnot distance to endow the sub-Riemannian structure with the structure of a
metric space. Given points p, q ∈M , the distance between them is defined as

d(p, q) = inf{L(γ) : γ is horizontal , γ(0) = p, γ(1) = q}
This is clearly another generalization of the Riemannian distance, which leads us to
our first important result:

Theorem 1 (Rashevskii-Chow) Let M be a sub-Riemannian manifold and d be
the Caratheodory-Carnot distance. Then

i) (M,d) is a metric space

ii) The topology induced by (M,d) is equivalent to the manifold topology.

To prove Theorem 1, we require three lemmas which we will not prove:

Lemma 1.2 ([1]] 3.33) Let M be an n−dimensional sub-Riemannian manifold with
generating family F = {Y 1, ..., Y k}. Then for every p ∈ M and every neighborhood
V ⊂ Rn of the origin, there exists s ∈ V and n vector fields, F1, ..., Fn, in F such that
s is a regular point of the map

ψ : Rn →M), ψ(x) = exp(xnFn(... exp(x1F1)p)

Lemma 1.3 ([1]] 3.36) Let p ∈ M and K ⊂ M be a compact subset such that
p ∈ int(K). Then there exists a number δK > 0 such that every horizontal curve γ,
with base-point p and length L(γ) < δK , has its image contained in K.

Proof. Theorem 1.

i) To show d is a metric, symmetry follows from the fact that reversing orientation
of an admissible curve preserves length.

For the triangle inequality, consider three points p, q, r ∈ M such that an ad-
missible curve γ1 connects p and q and an admissible curve γ2 connects q and
r. Then the concatenation of the two curves also results in an admissible curve
which will have length equal to the sum of the other two lengths. Naturally, q
may not fall along the trajectory from p to r, showing the triangle inequality.
This shows that d is indeed a metric.

To show d(p, q) = 0 if and only if p = q, Let p ∈ K compact such that q is not in
K. By Lemma 1.3, each admissible curve connecting p and q has length greater
than δK , so the distance is strictly greater than zero.

This shows d is a metric.
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ii) To show that the two induced topologies are equivalent, we must show, for all
p ∈M :

1. For every ε > 0, there exists a neighborhood Op such that Op ⊂ Bε(p).

2. For every neighborhood Op there exists δ > 0 such that Bδ(p) ⊂ Op.

where Op is a neighborhood under the manifold topology.

Let us start by proving the first statement: By Lemma 1.2, there exists a neigh-
borhood V ′ ⊂ V of s such that ψ is a diffeomorphism V ′ → ψ(V ′). To build a
local diffeomorphism that contains p, consider the map

ψ′(s) = exp(−snFn(... exp(−s1F1)(s1, ..., sn))

Then ψ′ is a diffeomorphism on a neighborhood V ′ s′ such that ψ′(s′) = p. Now
fix ε > 0 and apply this to where V is the neighborhood V = {s : ‖s‖ < ε} of the
origin in Rn. Then statement 1 holds by letting Op = ψ′(V ′). In fact, for q in
this set, let s ∈ Rn be the vector such that q = ψ′(s) and let γ be an admissible
curve connecting p and q constructed by concatenating the integral curves of the
vector fields F1, ..., Fn. Then, it follows that

d(p, q) ≤ L(γ) ≤
∑n

i=1(|si|+ |s′i|) ≤ 2ε
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Therefore, Op ⊂ Bε(p).

For the second statement, fix ε > 0 and let K be a compact set containing p.
Define CK and δK to be as in Lemma 1.3 and fix δ = min{δK , ε/CK}. Consider
a sequence γn : [0, 1] → M of admissible trajectories joining p and q. such that
L(γn) converges to d(p, q) as n → ∞. Without loss of generality, we have that
L(γn) is bounded by δ for all n. Then, by Lemma 1.3, γ([0, 1]) ⊂ K for all n.
Therefore, taking n → ∞, q ∈ BCKδ(p) ⊂ Bε(p). Therefore, when d(p, q) ≤ δ,
then q is contained in an ε-neighborhood of p under the manifold topology.

3.2 Length Minimizers and Completeness

Here, we will discuss length-minimizers on sub-Riemannian manifolds and their exis-
tence. A length-minimizer of two points p, q ∈ M is a horizontal curve γ such that
L(γ) = d(p, q). Previously, we defined the Carathedory-Carnot distance as an infi-
mum and there is generally no way to guarantee that can be achieved as a minimum.
However, we can characterize when length-minimizers exist. First, we give a lemma
without proof.

Lemma 2.1 Let {γn : [0, 1]→M}n≥1 be a sequence of horizontal curves parametrized
by arc length such that the sequence converges to a curve γ uniformly and lim inf

n→∞
L(γn)

is bounded. Then γ : [0, 1] → M is a horizontal curve and L(γ) is bounded by
lim inf
n→∞

L(γn).

It follows that, since [0, 1] is compact, uniformly convergence sequences of length-
minimizers converge to length-minimizers. Things brings us to our next major theorem:

Theorem 2 (Existence of minimizers) Let M be a sub-Riemannian manifold
and p ∈ M . Assuming the closure of B(p, r), for radius r > 0, is compact, then,
for all q ∈ B(p, r), there exists a length minimizer connecting p and q such that the
Caratheodory-Carnot distance, d(p, q), attains a minimum.

Proof. Fix q ∈ Br(p) and let γn : [0, 1] → M be a minimizing sequence of admissible
curves parametrized by constant speed which connect p and q such that L(γn) converges
to d(p, q). Since d(p, q) < r we have that L(γn) ≤ r for large enough n. Therefore, we
assume without loss of generality that γn([0, 1]) is contained in the closure of Br(p) for
all n. In particular, this means that

|γn(t)− γn(τ)| ≤
∫ t
τ
|γ̇n(s)|ds ≤ Crr|t− τ |, t, τ ∈ [0, 1]

for sufficiently large n where the constant Cr depends on the closure of Br(p). In other
words, all curves in the sequence are Lipschitz with a common Lipschitz constant. This
implies that the sequence is equicontinuous and uniformly bounded. Then, by Arzela-
Ascoli theorem, there exists a subsequence of curves γnk

such that the subsequence
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uniformly converges to a Lipschitz curve γ : [0, 1] → M . Then, by Lemma 2.1, γ
satisfies L(γ) ≤ lim inf L(γn) = d(p, q), implying that L(γ) = d(p, q).

With this, we conclude our parallels to Riemannian structure by exploring com-
pleteness. Before, the statement on completeness, we provide a lemma:

Lemma 3.1 Let M be a sub-Riemannian manifold. For every ε > 0 and p ∈ M , we
have

B(p, r + ε) =
⋃

q∈B(p,r)

B(q, ε)

Theorem 3 (Completeness Criteria) Let M be a sub-Riemannian manifold.
Then the following are equivalent:

i) (M,d) is complete.

ii) The closure of B(p, r) is compact for every p ∈M and r > 0.

iii) There exists some ε > 0 such that the closure of B(p, ε) is compact for every
p ∈M .

Proof. (iii) ⇒ i)) Assuming iii), we will show every Cauchy sequence converges. Let
ε > 0 be as in iii). Let {xn}n≥1 be such a Cauchy sequence such that d(xn, xm) ≤ ε
where n,m > N for some N . Then xn is in Bε(xm) for n ≥ m > N . Since, by
assumption, this is compact, then the sequence admits a convergent subsequence
which implies that the sequence converges in M .

(ii) ⇒ iii)) Clearly there exists ε such that the closure of Bε(p) is compact if we are
assuming that it is compact for any r > 0. Simply set ε = r.

(i) ⇒ ii)) Now we assume (M,d) is complete. Fix p ∈M and define a set A to be the
set of radii r such that the closure of Br(p) is compact. Let R be the supremum
of A. The set A is nonempty since the topology of (M,d) is locally compact.
Furthermore, this implies that R is nonzero. Then, we will show that A is open
and that R = ∞. Since a closed subset of a compact set is compact in (M,d),
this means that if the closure of Br(p) is compact and r > ρ, then Bρ(p) has
compact closure. Therefore, we will have shown that A = (0,∞).

It is enough to show that, if r ∈ A, then there exists δ > 0 such that r+δ ∈ A. For
each q ∈ Br(p), there exists ρ(q) small enough such that the closure of Bρ(q)(q)
is compact. We have that

B̄r(p) ⊂
⋃
q∈B̄r(x) B̄ρ(q)(q)

By compactness of the closure of Br(p), there exist a finitely many points q1, ..., qN
in this set such that
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B̄r(p) ⊂
⋃N
i=1 B̄ρ(qi)(qi)

Moreover, since the closure of Br+δ(p) coincides with the set of points q ∈ M
such that the distance of q to Br(p) is less than δ, then by Lemma 3.1, there
exists δ > 0 such that

B̄r+δ(p) ⊂
⋃n
i=1 B̄ρ(qi)(qi)

So, this shows that r+δ ∈ A since the union of finitely many compact sets is also
compact. Therefore, for any r ∈ A, there exists δ such that (r − δ, r + δ) ⊂ A,
showing that A is in fact open.

To show that A is an unbounded set, assume for a contradiction that R is a
finite number. This implies that the closure of any Br(p) ⊂ BR(p) is compact.
Therefore, every sequence contained in the closure of Br(p) is contained in some
compact set and therefore has a convergent subsequence. Consequently, this
means that the closure of BR(p) is compact and hence R ∈ A. However, we
showed above that there exists some δR such that R + δR ∈ A. This contradicts
that R is the supremum, so R = ∞. Since A = (0,∞) for any p, this implies
that the closure of Br(p) is compact for any p ∈M and any r > 0.

4 Pontryagin Extremals

4.1 The Maximal Principle

This section gives a small background on optimal control theory so that we can de-
rive an analogy between optimal control problems and problems on sub-Riemannian
manifolds. Consider a system of ordinary differential equations

ẋ = f(x, u)

where x ∈ Rn is our state variable, u ∈ Rp is our control parameter, and f is a
continuous vector field which is differentiable over x. A certain set of values U ⊂ Rp

are deemed to be admissible. A starting point x0 ∈ Rn and ending point x1 ∈ Rn are
give. With a fixed time interval, a function ν : [0, T ] → U is an admissible control.
When subjected to a cost functional, the optimal control ν∗(t) is the control such that
the corresponding solution trajectory (which has endpoints x0 and x1) χ∗([0, T ]) ∈ Rn

minimizes the cost functional. The Pontryagin maximum principle provides a way to
characterize solutions to these types of problems.
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Proposition 1 (Pontryagin Maximal Principle) Let ν∗(t) be an optimal control
and χ∗(t) be an optimal trajectory corresponding to the above problem. Denote the
vector field p∗ : [0, T ]→ Rn to be the solution to the adjoint equation:

ṗ∗(t) = 〈p∗(t), Dxf(x∗(t), u∗(t))〉 where p∗(T ) = χ̇∗(T )

Then the following holds:

〈p∗(t), f(x∗(t), u∗(t)〉 = max
w∈U
〈p∗(t), f(x∗(t), w)〉 a.e. for t ∈ [0, T ]

4.2 Characterization in the sub-Riemannian Case

We can use ideas from the above in order to characterize length-minimizers on sub-
Riemannian manifolds. Consider how this compares to the language developed in
section 2. Instead of some subset of Rp being our admissible values, we are taking a
sub-bundle of the tangent bundle, namely our set of distributions. Moreover, optimiza-
tion requires that we are minimizing the length of our trajectory. In the Riemannian
setting, length-minimizers satisfy conditions of a system of ordinary differential equa-
tions. However, in the sub-Riemannian case, we cannot parametrize a length-minimizer
by an initial velocity vector since the bundle rank of our sub-Riemannian structure will
be strictly less than the dimension of the manifold. Instead, we parametrize length-
minimizers by their initial point p0 and an initial covector λ0 ∈ Tp0M . The following
proposition gives conditions of length-minimizers that must be satisfied. A trajectory
satisfying either condition is called a Pontryagin extremal.

Proposition 2 (Characterization of Pontryagin Extremals) Let γ : [0, 1]→M
be an admissible curve with is a length-minimizer parametrized by constant speed. Let
ν(t) be the corresponding minimal control such that

L(γ) =

∫ 1

0

g(ν(t), ν(t))γ(t)dt = d(γ(0), γ(1))

with g(ν(t), ν(t))γ(t) constant a.e. on [0, 1]. Let P0,t be the flow of ν. Then there exists
λ0 ∈ T ∗γ(0)M such that, defining λ(t) = (P−1

0,t )∗λ0 so that λ(t) ∈ T ∗γ(t)M , then one of
the following conditions is satisfied:

(N) In coordinates, we have νi(t) = 〈γ(t), fi(γ(t))〉

(A) 0 = 〈γ(t), fi(γ(t))〉
If λ(t) satisfies condition (N), we say it is a normal extremal. On the other, hand if
it satisfies (A), then it is an abnormal extremal. γ(t) is called a normal or abnormal
extremal trajectory, respectively.

It requires close examination, however this characterization of Pontryagin extremals
is indeed a generalization to sub-Riemannian manifolds of the Pontryagin Maximal
Principle. This this way, we can see the connection to control theory where theorems
and techniques for solving problems can be utilized to solve the problem of character-
izing length-minimizing curves on a sub-Riemannian manifold.
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